

Hands-On	Functional	Programming	in	Rust

	

	

Build	modular	and	reactive	applications	with	functional	programming
techniques	in	Rust	2018

	

	

	

	

	

	

	

Andrew	Johnson

	

	

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Hands-On	Functional	Programming
in	Rust
Copyright	©	2018	Packt	Publishing	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations
embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing	or	its
dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book	by
the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Richa	Tripathi
Acquisition	Editor:	Karan	Sadawana
Content	Development	Editor:	Tiksha	Sarang
Technical	Editor:	Adhithya	Haridas
Copy	Editor:	Safis	Editing
Project	Coordinator:	Prajakta	Naik
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Graphics:	Jisha	Chirayil
Production	Coordinator:	Shantanu	Zagade	First	published:	May	2018

Production	reference:	1300518

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78883-935-8

www.packtpub.com

	

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Andrew	Johnson	is	a	software	developer	who	has	worn	many	hats.
Professionally,	he	has	worked	on	projects	written	in	C,	C++,	Java,	Python,	Ruby,
JavaScript,	Haskell,	OCaml,	and	now	Rust.	Most	notably,	he	has	worked	as	an
early	employee	at	Topsy	Labs	(acquired	by	Apple)	and	FiscalNote	(growing
rapidly).	Academically,	his	interests	are	focused	on	the	intersection	between
formal	language	processing	(such	as	programming	languages)	and	existing
natural	language	programming	techniques.

	

	

	

About	the	reviewer
Sebastian	Dröge	is	a	free	software	developer	currently	working	with	Centricular
Ltd.	He	has	been	involved	for	more	than	10	years	with	the	GStreamer	project,	a
cross-platform	multimedia	framework.	He	also	contributes	to	various	other
projects,	such	as	Debian,	GNOME,	Rust,	and	WebKit.	While	finishing	his
master's	degree	in	computer	science,	he	started	working	as	a	contractor	on	free
software	and	continues	to	do	so	to	this	day.

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

	

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Hands-On	Functional	Programming	in	Rust

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 Functional	Programming	–	a	Comparison

Technical	requirements

Reducing	code	weight	and	complexity

Making	generics	more	generic

Functions	as	values

Iterators

Compact	legible	expressions

Strict	abstraction	means	safe	abstraction

Scoped	data	binding

Algebraic	datatypes

Mixing	object-oriented	programming	and	functional	programming

Improving	project	architecture

File	hierarchy,	modules,	and	namespace	design

Functional	design	patterns

Metaprogramming

Summary

Questions

Further	reading

2.	 Functional	Control	Flow

Technical	requirements

Designing	the	program

Gathering	project	requirements

Architecting	a	code	map	from	requirements

Creating	a	Rust	project

Writing	stubs	for	each	program	requirement

Implementing	program	logic

Filling	in	the	blanks

Parsing	input	and	storing	as	building	description	and	floor	requests

Updating	location,	velocity,	and	acceleration

If	the	next	floor	request	in	the	queue	is	satisfied,	then	remove	it	

from	the	queue

Adjusting	motor	control	to	process	the	next	floor	request

Printing	real-time	statistics

Printing	summary

Breaking	down	long	segments	into	components

Searching	for	abstractions

Writing	tests

Unit	testing

Integration	testing

Summary

Questions

3.	 Functional	Data	Structures

Technical	requirements

Adjusting	to	changing	the	scope	of	the	project

Gathering	new	project	requirements

Architecting	a	change	map	from	requirements

Translating	expectations	into	requirements

Translating	requirements	into	a	change	map

Mapping	requirements	directly	to	code

Writing	the	physics	simulator

Writing	the	motor	controller

Writing	the	executable	to	run	a	simulation

Writing	the	executable	to	analyze	a	simulation

Running	simulations	and	analyzing	data

Summary

Questions

4.	 Generics	and	Polymorphism

Technical	requirements

Staying	productive	during	downtime

Learning	about	generics

Investigating	generics

Investigating	parametric	polymorphism

Investigating	generalized	algebraic	datatypes

Investigating	parametric	lifetimes

Defining	lifetimes	on	ground	types

Defining	lifetimes	on	generic	types

Defining	lifetimes	on	traits

Defining	lifetime	subtyping

Investigating	parametric	types

Applying	parameterization	concepts

Parameterizing	data

Parameterizing	functions	and	trait	objects

Parametric	traits	and	implementations

Summary

Questions

5.	 Code	Organization	and	Application	Architecture

Technical	requirements

Shipping	a	product	without	sacrificing	quality

Reorganizing	the	project

Planning	content	of	files	by	type

Organizing	the	motor_controllers.rs	module

Organizing	the	buildings.rs	module

Planning	content	of	files	by	purpose

Organizing	the	motion_controllers.rs	module

Organizing	the	trip_planning.rs	module

Organizing	the	elevator_drivers.rs	module

Planning	content	of	files	by	layer

Organizing	the	physics.rs	module

Organizing	the	data_recorder.rs	module

Planning	the	content	of	files	by	convenience

Organizing	the	simulate_trip.rs	executable

Organizing	the	analyze_trip.rs	executable

Organizing	the	operate_elevator.rs	executable

Mapping	code	changes	and	additions

Developing	code	by	type

Writing	the	motor_controllers.rs	module

Writing	the	buildings.rs	module

Developing	code	by	purpose

Writing	the	motion_controllers.rs	module

Writing	the	trip_planning.rs	module

Writing	the	elevator_drivers.rs	module

Developing	code	by	layer

Writing	the	physics.rs	module

Writing	the	data_recorders.rs	module

Developing	code	by	convenience

Writing	the	simulate_trip.rs	executable

Writing	the	analyze_trip.rs	executable

Writing	the	operate_elevator.rs	executable

Reflecting	on	the	project	structure

Summary

Questions

6.	 Mutability,	Ownership,	and	Pure	Functions

Technical	requirements

Recognizing	anti-patterns	of	ownership

Inspecting	the	microcontroller	drivers

Inspecting	the	type	and	trait	definitions

Defining	the	OverrideCode	enum

Defining	the	ErrorCode	enum

Defining	the	AuthorizedSession	struct	and	deconstructor

Authorizing	sessions

Checking	errors	and	resetting	state

Privileged	commands

Normal	commands

Querying	library	and	session	state

Inspecting	the	foreign	library	tests

Issuing	override	codes

Accessing	status	information	and	sessions

Deactivating	active	sessions

Issuing	normal	commands

Issuing	privileged	commands

Denying	unauthorized	commands

Inspecting	the	Rust	tests

Rust	authorization	with	sessions

Rust	sharing	session	reference

Privileged	commands

Unprivileged	commands

Denying	access	to	privileged	commands

Learning	the	rules	of	ownership

When	the	owner	goes	out	of	scope,	the	value	will	be	dropped

Using	immutable	data

Fixing	the	hard-to-reproduce	bug

Preventing	hard-to-reproduce	bugs

Using	pure	functions

Summary

Questions

7.	 Design	Patterns

Technical	requirements

Using	the	functor	pattern

Using	the	monad	pattern

Using	the	combinator	pattern

Parser	combinators

Using	the	lazy	evaluation	pattern

Summary

Questions

8.	 Implementing	Concurrency

Technical	requirements

Using	subprocess	concurrency

Understanding	nix	fork	concurrency

Using	thread	concurrency

Understanding	Send	and	Sync	traits

Using	functional	design	for	concurrency

Summary

Questions

9.	 Performance,	Debugging,	and	Metaprogramming

Technical	requirements

Writing	faster	code

Compiling	with	release	mode

Doing	less	work

Optimizing	the	code	that	needs	it	–	profiling

For	a	code	rarely	executed,	performance	is	not	affected

Multiples	of	small	numbers	are	also	small	numbers

Measuring	first,	to	optimize	it

Putting	the	fridge	next	to	the	computer

Capping	the	Big	O

Constanting	no	growth

Logarithmic	growth

Polynomial	growth

Exponential	growth

Referencing	data	is	faster

Preventing	bugs	with	defensive	coding

Using	Option	and	Result	instead	of	panic!

Using	typesafe	interfaces	instead	of	stringly	typed	interfaces

Using	the	heartbeat	pattern	for	long	running	processes

Validating	input	and	output

Finding	and	fixing	bugs

Metaprogramming

Summary

Questions

Assessments

Functional	Programming –	a	Comparison

Functional	Control	Flow

Functional	Data	Structures

Generics	and	Polymorphism

Code	Organization	and	Application	Architecture

Mutability,	Ownership,	and	Pure	Functions

Design	Patterns

Implementing	Concurrency

Performance,	Debugging,	and	Metaprogramming

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Thanks	for	your	interest	in	functional	programming	in	Rust.	Rust	is	a	very	young
programming	language	and	is	particularly	new	to	the	functional	programming
community.	Despite	its	age,	the	language	provides	a	wealth	of	tools	that	are	both
practical	and	sophisticated.

In	this	book,	we	will	introduce	general	functional	programming	principles	and
how	they	apply	to	Rust	specifically.	Our	goal	is	to	provide	knowledge	and	a
perspective	on	Rust	that	will	outlast	small	changes	to	language	features.	The
pace	of	development	of	Rust	is	so	fast	that	during	the	course	of	writing	the	book
we	introduced	new	features	as	they	became	available	and	relevant.	We	want	to
equip	the	reader	to	produce	code	for	this	fast-moving	environment	such	that	they
are	prepared	to	best	utilize	new	features	as	they	are	released.

	

	

	

Who	this	book	is	for
This	book	is	for	developers	who	are	familiar	with	basic	Rust	features	or	are
willing	to	reference	other	material	as	they	read	along.	We	will	not	fully	explain
every	new	symbol,	library,	or	syntax	form,	but	we	do	explain	libraries	that	are
considered	more	advanced	or	syntax	that	may	be	difficult	to	read.	Similarly,
some	concepts	that	are	only	briefly	explained	in	the	introductory	material	will	be
explained	in	detail.

	

	

	

What	this	book	covers
Chapter	1,	Functional	Programming	–	a	Comparison,	introduces	functional
programming	in	Rust.	Comparisons	are	drawn	between	functional	style	and
other	paradigms	that	are	prevalent	or	influential	to	Rust.	The	chapter	also	serves
as	a	brief	outline	of	topics	that	will	appear	later	in	the	book.

Chapter	2,	Functional	Control	Flow,	introduces	Rust	control	flow	structures	while
explaining	how	they	are	relevant	to	the	functional	style	of	programming.	The
expression-centric	nature	of	functional	programming	and	Rust	is	illustrated
through	examples.	Limiting	as	it	may	be,	the	chapter	also	begins	an	ongoing
project	using	only	the	procedural	expression	style	of	programming.

Chapter	3,	Functional	Data	Structures,	introduces	the	reader	to	the	various,	highly
expressive	data	types	available	in	Rust.	Notably,	the	enum	type	is	introduced,
which	holds	particular	significance	in	functional	programming.	The	project
continues	to	grow	to	incorporate	a	variety	of	these	data	types.

Chapter	4,	Generics	and	Polymorphism,	explains	the	concepts	of	parameterization
of	data	(generics)	and	parameterization	of	control	flow	(polymorphism).
Parameterization	and	its	natural	interaction	with	traits	reduces	the	programmer's
burden,	but	the	syntax	can	become	overwhelming.	Some	approaches	to	reduce	or
mitigate	parameter	explosion	are	introduced.	The	ongoing	project	again	grows	to
incorporate	these	features.

Chapter	5,	Code	Organization	and	Application	Architecture,	talks	about	some
architectural	concerns,	recommendations,	and	best	practices.	Designing	and
managing	the	implementation	of	a	software	project	is	not	formulaic.	No	project
is	the	same,	and	few	are	highly	similar,	thus	no	engineering	procedure	can
capture	the	nuances	of	software	development.	In	this	chapter,	we	provide	the
best	tools	available,	and	specifically,	the	best	that	functional	programming	has	to
offer.

Chapter	6,	Mutability,	Ownership,	and	Pure	Functions,	digs	into	some	of	the	more
unique	features	in	Rust.	This	chapter	introduces	the	concepts	of	ownership	and
lifetimes,	which	are	common	stumbling	blocks	when	learning	Rust.	The

functional	concepts	of	immutability	and	pure	functions	are	also	introduced	to
help	untangle	some	of	the	spaghetti	that	a	naive	Rust	programmer	might
generate	when	attempting	to	circumvent	the	rules	of	ownership	in	Rust.

Chapter	7,	Design	Patterns,	lists	as	many	functional	programming	cheat	codes	that
can	fit	into	a	single	chapter.	The	concept	of	functors	and	monads	are	explained
with	examples	and	some	casual	definitions.	The	chapter	also	briefly	introduces
the	style	of	functional	reactive	programming	and	uses	it	to	build	a	quick	and
dirty	web	framework.

Chapter	8,	Implementing	Concurrency,	explains	how	to	do	multiple	things	at	the
same	time.	Most	of	the	chapter	is	spent	clarifying	the	differences	and	relative
strengths	and	weaknesses	between	subprocesses,	forked	processes,	and	threads.
The	Rust	thread	concurrency	model	is	then	assumed	and	more	information	is
provided	to	clarify	Rust-specific	logic	regarding	threads.	Toward	the	end	of	the
chapter,	the	actor	model	of	concurrency	is	introduced,	which	is	a	robust	model	of
concurrency	that	can	adapt	to	most	situations	and	programming	paradigms.

Chapter	9,	Performance,	Debugging,	and	Metaprogramming,	wraps	up	the	book
with	some	miscellaneous	tips	for	programming	in	Rust.	The	performance	tips	are
not	particularly	functional,	but	rather	concerned	primarily	with	language-specific
details,	general	advice,	or	relevant	bits	of	computer	science.	Debugging
introduces	many	tips	on	how	to	prevent	bugs.	Also,	how	to	use	an	interactive
debugger	is	explained	through	examples.	Metaprogramming	explains	precisely
how	Rust	macros	and	procedural	macros	work.	This	is	a	great	feature	of	Rust,
but	is	not	documented	well,	so	it	might	be	scary	to	approach.

To	get	the	most	out	of	this	book
1.	 We	assume	familiarity	with	the	concepts	from	the	first	10	chapters	of	Rust

documentation	(https://doc.rust-lang.org/book/).	Some	of	the	material	from
these	chapters	is	fairly	advanced,	so	we	will	also	explain	that	here	when
relevant.	However,	the	knowledge	of	syntax	and	very	basic	features	will	be
expected.

2.	 Clone	the	GitHub	code	repository	and	follow	along.	Tweak	the	examples
and	see	what	effects	you	can	create.

3.	 Stay	curious.	Some	of	the	keywords	we	mentioned	could	fill	an	entire	book
with	unique	content.	Some	of	these	topics	presented	are	so	pervasive	that
they	have	decent	Wikipedia	articles	to	explain	and	expand	on	the	concepts.
However,	knowing	the	keyword	is	required	to	even	know	what	to	search
for.

	

	

https://doc.rust-lang.org/book/

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Hands-On-Functional-Programming-in-Rust.	In	case	there's	an	update	to	the	code,
it	will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

	

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-Rust
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Let's	start	by	defining	some	of	the	type
declarations	for	the	physics	module."

A	block	of	code	is	set	as	follows:

pub	trait	MotorController

{

			fn	init(&mut	self,	esp:	ElevatorSpecification,	est:	ElevatorState);

			fn	poll(&mut	self,	est:	ElevatorState,	dst:	u64)	->	MotorInput;

}

Any	command-line	input	or	output	is	written	as	follows:

closure	may	outlive	the	current	function,	but	it	borrows	`a`,	which	is

owned	by	the	current	function

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

	

	

https://www.packtpub.com/

Functional	Programming	–	a
Comparison
Functional	programming	(FP)	is	the	second	most	popular	programming
paradigm,	behind	only	object-oriented	programming	(OOP).	For	many	years,
these	two	paradigms	have	been	separated	into	different	languages,	so	as	not	to	be
mixed.	Multi-paradigm	languages	have	attempted	to	support	both	approaches.
Rust	is	one	such	language.

As	a	broad	definition,	functional	programming	emphasizes	the	use	of
composable	and	maximally	reusable	functions	to	define	program	behavior.
Using	these	techniques,	we	will	show	how	functional	programming	has	adapted
clever	solutions	to	many	common	yet	difficult	problems.	This	chapter	will
outline	most	of	the	concepts	presented	in	this	book.	The	remaining	chapters	will
be	dedicated	to	helping	you	master	each	technique.

The	learning	outcomes	we	hope	to	provide	are	as	follows:

Being	able	to	use	functional	style	to	reduce	code	weight	and	complexity
Being	able	to	write	robust	safe	code	by	utilizing	safe	abstractions
Being	able	to	engineer	complex	projects	using	functional	principles

	

	

Technical	requirements
A	recent	version	of	Rust	is	necessary	to	run	the	examples	provided,	and	can	be
found	here:

https://www.rust-lang.org/en-US/install.html

This	chapter's	code	is	also	available	on	GitHub,	here:

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Specific	installation	and	build	instructions	are	also	included	in	each	chapter's
README.md	file.

https://www.rust-lang.org/en-US/install.html
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Reducing	code	weight	and	complexity
Functional	programming	can	greatly	reduce	the	amount	and	complexity	of	code
required	to	accomplish	tasks.	Particularly	in	Rust,	proper	application	of
functional	principles	may	simplify	the	often	complex	design	requirements,	and
make	programming	a	much	more	productive	and	rewarding	experience.

Making	generics	more	generic
Making	generics	more	generic	relates	to	the	practice	of	parameterizing	data
structures	and	functions	originated	in	functional	languages.	In	Rust,	and	other
languages,	this	is	called	generics.	Types	and	functions	can	all	be	parameterized.
One	or	more	constraints	may	be	placed	on	generic	types	to	indicate	requirements
of	a	trait	or	lifetime.

Struct	definitions	can	become	redundant	without	generics.	Here	is	a	definition	of
three	structs	that	define	a	common	concept	of	a	Point.	However,	the	structs	use
different	numerical	types,	so	the	singular	concept	is	expanded	into	three	separate
PointN	type	definitions	in	intro_generics.rs:

struct	PointU32	

{

				x:	u32,

				y:	u32

}

struct	PointF32

{

				x:	f32,

				y:	f32

}

struct	PointI32

{

				x:	i32,

				y:	i32

}

Instead,	we	can	use	generics	to	remove	duplicate	code	and	make	the	code	more
robust.	Generic	code	is	more	easily	adaptable	to	new	requirements	because	many
behaviors	(and	thus	requirements)	can	be	parameterized.	If	a	change	is	needed,	it
is	better	to	only	change	one	line	rather	than	a	hundred.

This	code	snippet	defines	a	parameterized	Point	struct.	Now,	a	single	definition
can	capture	all	possible	numerical	types	for	a	Point	in	intro_generics.rs:

struct	Point<T>

{

				x:	T,

				y:	T

}

Functions	are	also	problematic	without	generics.

Here	is	a	simple	function	to	square	a	number.	However,	to	capture	possible
numerical	types,	we	define	three	different	functions	in	intro_generics.rs:

fn	foo_u32(x:	u32)	->	u32

{

				x*x

}

fn	foo_f32(x:	f32)	->	f32

{

				x*x

}

fn	foo_i32(x:	i32)	->	i32

{

				x*x

}

Function	parameters,	such	as	this	one,	may	need	trait	bounds	(a	constraint
specifying	one	or	more	traits)	to	permit	any	behavior	on	that	type	that	is	used	in
the	function	body.

Here	is	the	foo	function,	redefined	with	a	parameterized	type.	A	single	function
can	define	the	operation	for	all	numerical	types.	Explicit	bounds	must	be	set	for
even	basic	operations,	such	as	multiply	or	even	copy,	in	intro_generics.rs:

fn	foo<T>(x:	T)	->	T

where	T:	std::ops::Mul<Output=T>	+	Copy

{

				x*x

}

Even	functions	can	be	sent	as	parameters.	We	call	these	higher-order	functions.

Here	is	a	trivial	function	that	accepts	a	function	and	argument,	then	calls	the
function	with	the	argument,	returning	the	result.	Note	the	trait	bound	Fn,
indicating	that	the	provided	function	is	a	closure.	For	an	object	to	be	callable,	it
must	implement	one	of	the	fn,	Fn,	FnMut,	or	FnOnce	traits	in	intro_generics.rs:

fn	bar<F,T>(f:	F,	x:	T)	->	T

where	F:	Fn(T)	->	T

{

				f(x)

}

Functions	as	values
Functions	are	nominally	the	big	feature	of	functional	programming.	Specifically,
functions	as	values	are	the	keystone	of	the	whole	paradigm.	Glossing	over	much
detail,	we	will	also	introduce	the	term	closure	here	for	future	reference.	A
closure	is	an	object	that	acts	as	a	function,	implementing	fn,	Fn,	FnMut,	or	FnOnce.

Simple	closures	can	be	defined	with	the	built-in	closure	syntax.	This	syntax	is
also	beneficial	because	the	fn,	Fn,	FnMut,	and	FnOnce	traits	are	automatically
implemented	if	permitted.	This	syntax	is	great	for	shorthand	manipulation	of
data.

Here	is	an	iterator	over	the	range	0	to	10,	mapped	to	the	squared	value.	The
square	operation	is	applied	using	an	inline	closure	definition	sent	to	the	map
function	of	the	iterator.	The	result	of	this	expression	will	be	an	iterator.	Here	is
an	expression	in	intro_functions.rs:

(0..10).map(|x|	x*x);

Closures	can	also	have	complex	bodies	with	statements	if	the	block	syntax	is
used.

Here	is	an	iterator	from	0	to	10,	mapped	with	a	complex	equation.	The	closure
provided	to	map	includes	a	function	definition	and	a	variable	binding	in
intro_functions.rs:

(0..10).map(|x|	{

				fn	f(y:	u32)	->	u32	{

								y*y

				}

				let	z	=	f(x+1)	*	f(x+2);

				z*z

}

It	is	possible	to	define	functions	or	methods	that	accept	closures	as	arguments.
To	use	the	closure	as	a	callable	function,	a	bound	of	Fn,	FnMut,	or	FnOnce	must	be
specified.

Here	is	a	HoF	definition	accepting	a	function	g	and	an	argument	x.	The	definition

constrains	g	and	x	to	process	u32	types,	and	defines	some	mathematical	operations
involving	calls	to	g.	An	invocation	of	the	f	HoF	is	also	provided,	as	follows,
using	a	simple	inline	closure	definition	in	intro_functions.rs:

fn	f<T>(g:	T,	x:	u32)	->	u32

where	T:	Fn(u32)	->	u32

{

				g(x+1)	*	g(x+2)

}

fn	main()

{

			f(|x|{	x*x	},	2);

}

Many	parts	of	the	standard	library,	particularly	iterators,	encourage	heavy	use	of
functions	as	arguments.

Here	is	an	iterator	from	0	to	10	followed	by	many	chained	iterator	combinators.
The	map	function	returns	a	new	value	from	an	original.	inspect	looks	at	a	value,
does	not	change	it,	but	permits	side-effects.	filter	omits	all	values	that	do	not
satisfy	a	predicate.	filter_map	filters	and	maps	with	a	single	function.	The	fold
reduces	all	results	to	a	single	value,	starting	from	an	initial	value,	working	left	to
right.	Here	is	the	expression	in	intro_functions.rs:

(0..10).map(|x|	x*x)

							.inspect(|x|{	println!("value	{}",	*x)	})

							.filter(|x|	*x<3)

							.filter_map(|x|	Some(x))

							.fold(0,	|x,y|	x+y);

Iterators
Iterators	are	a	common	feature	of	OOP	languages,	and	Rust	supports	this
concept	well.	Rust	iterators	are	also	designed	with	functional	programming	in
mind,	allowing	programmers	to	write	more	legible	code.	The	specific	concept
emphasized	here	is	composability.	When	iterators	can	be	manipulated,
transformed,	and	combined,	the	mess	of	for	loops	can	be	replaced	by	individual
function	calls.	These	examples	can	be	found	in	the	intro_iterators.rs	file.	This	is
depicted	in	the	following	table:

Function	name	with	description Example

Chain	concatenates	two	iterators:	first...second (0..10).chain(10..20);

The	zip	function	combines	two	iterators	into	tuple
pairs,	iterating	until	the	end	of	the	shortest	iterator:
(a1,b1),	(a2,	b2),	...

(0..10).zip(10..20);

The	enumerate	function	is	a	special	case	of	zip	that
creates	numbered	tuples	(0,	a1),(1,a2),	…

(0..10).enumerate();

The	inspect	function	applies	a	function	to	all	values
in	the	iterator	during	iteration

(0..10).inspect(|x|{

println!("value	{}",

*x)	});

The	map	function	applies	a	function	to	each	element,
returning	the	result	in	place

(0..10).map(|x|

x*x);

The	filter	function	restricts	elements	to	those
satisfying	a	predicate

(0..10).filter(|x|

*x<3);

The	fold	function	accumulates	all	values	into	a	single
result

(0..10).fold(0,

|x,y|	x+y);

When	you	want	to	apply	the	iterator,	you	can	use	a
for	loop	or	call	collect

for	i	in	(0..10)	{}

(0..10).collect::

<Vec<u64>>();

	

	

Compact	legible	expressions
In	functional	languages,	all	terms	are	expressions.	There	are	no	statements	in
function	bodies,	only	a	single	expression.	All	control	flow	operators	are	then
formulated	as	expressions	with	a	return	value.	In	Rust,	this	is	almost	the	case;
the	only	non-expressions	are	let	statements	and	item	declarations.

Both	of	these	statements	can	be	wrapped	in	blocks	to	create	an	expression	along
with	any	other	term.	An	example	for	this	is	the	following,	in	intro_expressions.rs:

let	x	=	{

				fn	f(x:	u32)	->	u32	{

								x	*	x

				}

				let	y	=	f(5);

				y	*	3

};

This	nested	format	is	uncommon	in	the	wild,	but	it	illustrates	the	permissive
nature	of	Rust	grammar.

Returning	to	the	concept	of	functional	style	expressions,	the	emphasis	should
always	be	on	writing	legible	literate	code	without	much	hassle	or	bloat.	When
someone	else,	or	you	at	a	later	time,	comes	to	read	your	code,	it	should	be
immediately	understandable.	Ideally,	the	code	should	document	itself.	If	you	find
yourself	constantly	writing	code	twice,	once	in	code	and	again	as	comments,
then	you	should	reconsider	how	effective	your	programming	practices	really	are.

To	start	with	some	examples	of	functional	expressions,	let's	look	at	an
expression	that	exists	in	most	languages,	the	ternary	conditional	operator.	In	a
normal	if	statement,	the	condition	must	occupy	its	own	line	and	thus	cannot	be
used	as	a	sub-expression.

The	following	is	a	traditional	if	statement,	initializing	a	variable	in
intro_expressions.rs:

let	x;

if	true	{

				x	=	1;

}	else	{

				x	=	2;

}

With	the	ternary	operator,	this	assignment	can	be	moved	to	a	single	line,	shown
as	follows	in	intro_expressions.rs:

let	x	=	if	true	{	1	}	else	{	2	};

Almost	every	statement	from	OOP	in	Rust	is	also	an	expression—if,	for,	while,
and	so	on.	One	of	the	more	unique	expressions	to	see	in	Rust	that	is	uncommon
in	OOP	languages	is	direct	constructor	expressions.	All	Rust	types	can	be
instantiated	by	single	expressions.	Constructors	are	only	necessary	in	specific
cases,	for	example,	when	an	internal	field	requires	complex	initialization.	The
following	is	a	simple	struct	and	an	equivalent	tuple	in	intro_expressions.rs:

struct	MyStruct

{

				a:	u32,

				b:	f32,

				c:	String

}

fn	main()

{

				MyStruct	{

								a:	1,

								b:	1.0,

								c:	"".to_string()

				};

				(1,	1.0,	"".to_string());

}

Another	distinctive	expression	from	functional	languages	is	pattern	matching.
Pattern	matching	can	be	thought	of	as	a	more	powerful	version	of	a	switch
statement.	Any	expression	can	be	sent	into	a	pattern	expression	and	de-
structured	to	bind	internal	information	into	local	variables	before	executing	a
branch	expression.	Pattern	expressions	are	uniquely	suited	for	working	with
enums.	The	two	make	a	perfect	pair.

The	following	snippet	defines	a	Term	as	a	tagged	union	of	expression	options.	In
the	main	function,	a	Term	t	is	constructed,	then	matched	with	a	pattern	expression.
Note	the	syntax	similarity	between	the	definition	of	a	tagged	union	and	the
matching	inside	of	a	pattern	expression	in	intro_expressions.rs:

enum	Term

{

				TermVal	{	value:	String	},

				TermVar	{	symbol:	String	},

				TermApp	{	f:	Box<Term>,	x:	Box<Term>	},

				TermAbs	{	arg:	String,	body:	Box<Term>	}

}

fn	main()

{

				let	mut	t	=	Term::TermVar	{

								symbol:	"".to_string()

				};

				match	t	{

								Term::TermVal	{	value:	v1	}	=>	v1,

								Term::TermVar	{	symbol:	v1	}	=>	v1,

								Term::TermApp	{	f:	ref	v1,	x:	ref	v2	}	=>

												"TermApp(?,?)".to_string(),

								Term::TermAbs	{	arg:	ref	mut	v1,	body:	ref	mut	v2	}	=>		

												"TermAbs(?,?)".to_string()

				};

}

Strict	abstraction	means	safe
abstraction
Having	a	stricter	type	system	does	not	imply	that	code	will	have	more
requirements	or	be	any	more	complex.	Rather	than	strict	typing,	consider	using
the	term	expressive	typing.	Expressive	typing	provides	more	information	to	the
compiler.	This	extra	information	allows	the	compiler	to	provide	extra	assistance
while	programming.	This	extra	information	also	permits	a	very	rich
metaprogramming	system.	This	is	all	in	addition	to	the	obvious	benefit	of	safer,
more	robust	code.

	

	

	

Scoped	data	binding
Variables	in	Rust	are	treated	much	more	strictly	than	in	most	other	languages.
Global	variables	are	almost	entirely	disallowed.	Local	variables	are	put	under
close	watch	to	ensure	that	allocated	data	structures	are	properly	deconstructed
before	going	out	of	scope,	but	not	sooner.	This	concept	of	tracking	a	variable's
proper	scope	is	known	as	ownership	and	lifetime.

In	a	simple	example,	data	structures	that	allocate	memory	will	deconstruct
automatically	when	they	go	out	of	scope.	No	manual	memory	management	is
required	in	intro_binding.rs:	fn	scoped()	{
vec![1,	2,	3];
}

In	a	slightly	more	complex	example,	allocated	data	structures	can	be	passed
around	as	return	values,	or	referenced,	and	so	on.	These	exceptions	to	simple
scoping	must	also	be	accounted	for	in	intro_binding.rs:	fn	scoped2()	->	Vec<u32>
{
vec![1,	2,	3]
}

This	usage	tracking	can	get	complicated	(and	undecidable),	so	Rust	has	some
rules	that	restrict	when	a	variable	can	escape	a	context.	We	call	this	complex
rules	ownership.	It	can	be	explained	with	the	following	code,	in	intro_binding.rs:
fn	scoped3()
{
let	v1	=	vec![1,	2,	3];
let	v2	=	v1;
//it	is	now	illegal	to	reference	v1
//ownership	has	been	transferred	to	v2
}

When	it	is	not	possible	or	desirable	to	transfer	ownership,	the	clone	trait	is
encouraged	to	create	a	duplicate	copy	of	whatever	data	is	referenced	in
intro_binding.rs:	fn	scoped4()

{
vec![1,	2,	3].clone();
"".to_string().clone();
}

Cloning	or	copying	is	not	a	perfect	solution,	and	comes	with	a	performance
overhead.	To	make	Rust	faster,	and	it	is	pretty	fast,	we	also	have	the	concept	of
borrowing.	Borrowing	is	a	mechanism	to	receive	a	direct	reference	to	some	data
with	the	promise	that	ownership	will	be	returned	by	some	specific	point.
References	are	indicated	by	an	ampersand.	Consider	the	following	example,	in
intro_binding.rs:	fn	scoped5()
{
fn	foo(v1:	&Vec<u32>)
{
for	v	in	v1
{
println!("{}",	v);
}
}

let	v1	=	vec![1,	2,	3];
foo(&v1);

//v1	is	still	valid
//ownership	has	been	returned
v1;
}

Another	benefit	of	strict	ownership	is	safe	concurrency.	Each	binding	is	owned
by	a	particular	thread,	and	that	ownership	can	be	transferred	to	new	threads	with
the	move	keyword.	This	has	been	explained	with	the	following	code,	in
intro_binding.rs:	use	std::thread;

fn	thread1()
{
let	v	=	vec![1,	2,	3];

let	handle	=	thread::spawn(move	||	{
println!("Here's	a	vector:	{:?}",	v);
});

handle.join().ok();
}

To	share	information	between	threads,	programmers	have	two	main	options.

First,	programmers	may	use	the	traditional	combination	of	locks	and	atomic
references.	This	is	explained	with	the	following	code,	in	intro_binding.rs:	use
std::sync::{Mutex,	Arc};
use	std::thread;

fn	thread2()
{

let	counter	=	Arc::new(Mutex::new(0));
let	mut	handles	=	vec![];

for	_	in	0..10	{
let	counter	=	Arc::clone(&counter);
let	handle	=	thread::spawn(move	||	{
let	mut	num	=	counter.lock().unwrap();
*num	+=	1;
});
handles.push(handle);
}

for	handle	in	handles	{
handle.join().unwrap();
}

println!("Result:	{}",	*counter.lock().unwrap());
}

Second,	channels	provide	a	nice	mechanism	for	message	passing	and	job
queuing	between	threads.	The	send	trait	is	also	implemented	automatically	for

most	objects.	Consider	the	following	code,	in	intro_binding.rs:	use	std::thread;
use	std::sync::mpsc::channel;

fn	thread3()	{

let	(sender,	receiver)	=	channel();
let	handle	=	thread::spawn(move	||{

//do	work
let	v	=	vec![1,	2,	3];
sender.send(v).unwrap();

});

handle.join().ok();
receiver.recv().unwrap();
}

All	of	this	concurrency	is	type-safe	and	compiler-enforced.	Use	threads	as	much
as	you	want,	and	if	you	accidentally	try	to	create	a	race	condition	or	simple
deadlock,	then	the	compiler	will	stop	you.	We	call	this	fearless	concurrency.

Algebraic	datatypes
In	addition	to	structs/objects	and	functions/methods,	Rust	functional
programming	includes	some	rich	additions	to	definable	types	and	structures.
Tuples	provide	a	shorthand	for	defining	simple	anonymous	structs.	Enums
provide	a	type-safe	approach	to	unions	of	complex	data	structures	with	the	added
bonus	of	a	constructor	tag	to	help	in	pattern	matching.	The	standard	library	has
extensive	support	for	generic	programming,	from	base	types	to	collections.	Even
the	object	system	traits	are	a	hybrid	cross	between	the	OOP	concept	of	a	class
and	the	FP	concept	of	type	classes.	Functional	style	lurks	around	every	corner,
and	even	if	you	don't	seek	them	in	Rust,	you	will	probably	find	yourself
unknowingly	using	the	features.

The	type	aliases	can	be	helpful	to	create	shorthand	names	for	complex	types.
Alternatively,	the	newtype	struct	pattern	can	be	used	to	create	an	alias	with
different	non-equivalent	types.	Consider	the	following	example,	in
intro_datatypes.rs:

//alias

type	Name	=	String;

//newtype

struct	NewName(String);

A	struct,	even	when	parameterized,	can	be	repetitive	when	used	simply	to	store
multiple	values	into	a	single	object.	This	can	be	seen	in	intro_datatypes.rs:

struct	Data1

{

				a:	i32,

				b:	f64,

				c:	String

}

struct	Data2

{

				a:	u32,

				b:	String,

				c:	f64

}

A	tuple	helps	eliminate	redundant	struct	definitions.	No	prior	type	definitions	are
necessary	to	use	tuples.	Consider	the	following	example,	in	intro_datatypes.rs:

//alias	to	tuples

type	Tuple1	=	(i32,	f64,	String);

type	Tuple2	=	(u32,	String,	f64);

//named	tuples

struct	New1(i32,	f64,	String);

struct	New2(u32,	String,	f64);

Standard	operators	can	be	implemented	for	any	type	by	implementing	the	correct
trait.	Consider	the	following	example	for	this,	in	intro_datatypes.rs:

use	std::ops::Mul;

struct	Point

{

				x:	i32,

				y:	i32

}

impl	Mul	for	Point

{

				type	Output	=	Point;

				fn	mul(self,	other:	Point)	->	Point

				{

								Point

								{

												x:	self.x	*	other.x,

												y:	self.y	*	other.y

								}

				}

}

Standard	library	collections	and	many	other	built-in	types	are	generic,	such	as
HashMap	in	intro_datatypes.rs:

use	std::collections::HashMap;

type	CustomHashMap	=	HashMap<i32,u32>;

Enums	are	a	type-safe	union	of	multiple	types.	Note	that	recursive	enum
definitions	must	wrap	the	inner	value	in	a	container	such	as	Box,	otherwise	the
size	would	be	infinite.	This	is	depicted	as	follows,	in	intro_datatypes.rs:

enum	BTree<T>

{

				Branch	{	val:T,	left:Box<BTree<T>>,	right:Box<BTree<T>>	},

				Leaf	{	val:	T	}

}

Tagged	unions	are	also	used	for	more	complex	data	structures.	Consider	the
following	code,	in	intro_datatypes.rs:

enum	Term

{

				TermVal	{	value:	String	},

				TermVar	{	symbol:	String	},

				TermApp	{	f:	Box<Term>,	x:	Box<Term>	},

				TermAbs	{	arg:	String,	body:	Box<Term>	}

}

Traits	are	a	bit	like	object	classes	(OOP),	shown	with	the	following	code
example,	in	intro_datatypes.rs:

trait	Data1Trait

{

				//constructors

				fn	new(a:	i32,	b:	f64,	c:	String)	->	Self;

				

				//methods

				fn	get_a(&self)	->	i32;

				fn	get_b(&self)	->	f64;

				fn	get_c(&self)	->	String;

}

Traits	are	also	like	type	classes	(FP),	shown	with	the	following	code	snippet,	in
intro_datatypes.rs:

trait	BehaviorOfShow

{

				fn	show(&self)	->	String;

}

Mixing	object-oriented	programming
and	functional	programming
As	mentioned	before,	Rust	supports	much	of	both	object-oriented	and	functional
programming	styles.	Datatypes	and	functions	are	neutral	to	either	paradigm.
Traits	specifically	support	a	hybrid	blend	of	both	styles.

First,	in	an	object-oriented	style,	defining	a	simple	class	with	a	constructor	and
some	methods	can	be	accomplished	with	a	struct,	trait,	and	impl.	This	is
explained	using	the	following	code	snippet,	in	intro_mixoopfp.rs:

struct	MyObject

{

				a:	u32,

				b:	f32,

				c:	String

}

trait	MyObjectTrait

{

				fn	new(a:	u32,	b:	f32,	c:	String)	->	Self;

				fn	get_a(&self)	->	u32;

				fn	get_b(&self)	->	f32;

				fn	get_c(&self)	->	String;

}

impl	MyObjectTrait	for	MyObject

{

				fn	new(a:	u32,	b:	f32,	c:	String)	->	Self

				{

								MyObject	{	a:a,	b:b,	c:c	}

				}

				fn	get_a(&self)	->	u32

				{

								self.a

				}

				fn	get_b(&self)	->	f32

				{

								self.b

				}

				fn	get_c(&self)	->	String

				{

								self.c.clone()

				}

}

Adding	support	for	functional	programming	onto	an	object	is	as	simple	as

defining	traits	and	methods	that	use	functional	language	features.	For	example,
accepting	a	closure	can	become	a	great	abstraction	when	used	appropriately.
Consider	the	following	example,	in	intro_mixoopfp.rs:

trait	MyObjectApply

{

				fn	apply<F,R>(&self,	f:F)	->	R

				where	F:	Fn(u32,f32,String)	->	R;

}

impl	MyObjectApply	for	MyObject

{

				fn	apply<F,R>(&self,	f:F)	->	R

				where	F:	Fn(u32,f32,String)	->	R

				{

								f(self.a,	self.b,	self.c.clone())

				}

}

Improving	project	architecture
Functional	programs	encourage	good	project	architecture	and	principled	design
patterns.	Using	the	building	blocks	of	functional	programming	often	reduces	the
number	of	design	choices	to	be	made	in	such	a	way	that	good	options	become
obvious.

"There	should	be	one	-	and	preferably	only	one	-	obvious	way	to	do	it."
–	PEP	20

File	hierarchy,	modules,	and
namespace	design
Rust	programs	are	compiled	primarily	in	one	of	two	ways.	The	first	is	to	use
rustc	to	compile	individual	files.	The	second	is	to	describe	an	entire	package	for
compilation	using	cargo.	We	will	assume	here	that	projects	are	built	using	cargo,
as	follows:

1.	 To	start	a	package,	you	first	create	a	Cargo.toml	file	in	a	directory.	That
directory	will	be	your	package	directory	from	now	on.	This	is	a
configuration	file	that	will	tell	the	compiler	what	code,	assets,	and	extra
information	should	be	included	into	the	package:

[package]

name	=	"fp_rust"

version	=	"0.0.1"

2.	 After	this	basic	configuration,	you	can	now	use	cargo	build	to	compile	the
entire	project.	Where	you	decide	to	place	your	code	files,	and	what	to	name
them,	is	determined	by	how	you	want	to	refer	to	them	in	the	module
namespace.	Each	file	will	be	given	its	own	module	mod.	You	can	also	nest
modules	inside	files:

mod	inner_module

{

				fn	f1()

				{

								println!("inner	module	function");

				}

}

3.	 After	these	steps,	projects	can	then	be	added	as	cargo	dependencies,	and
namespaces	can	be	used	inside	of	modules	to	expose	public	symbols.
Consider	the	following	code	snippet:

extern	crate	package;

use	package::inner_module::f1;

These	are	the	basic	building	blocks	of	Rust	modules,	but	what	does	this	have	to
do	with	functional	programming?

Architecting	a	project	in	functional	style	is	a	process,	and	lends	itself	to	certain
routines.	Typically,	the	project	architect	will	start	by	designing	the	core	data
structures	and	in	complex	cases	also	the	physical	structure	(where	code/services
will	operationally	be	run).	Once	the	data	layout	has	been	outlined	in	sufficient
detail,	then	core	functions/routines	can	be	planned	(such	as	how	the	program
behaves).	Up	to	this	point,	there	may	be	code	left	unimplemented	if	coding	is
happening	during	the	architecting	stage.	The	final	stage	involves	replacing	this
mock	code	with	correct	behaviors.

Following	this	stage-by-stage	development	process,	we	can	also	see	an
archetypical	file	layout	forming.	It	is	common	to	see	these	stages	written	top	to
bottom	in	actual	programs.	Though	it	is	unlikely	the	authors	went	through
planning	in	these	explicit	stages,	it	still	is	a	common	pattern	due	to	simplicity's
sake.	Consider	the	following	example:	//trait	definitions

//data	structure	and	trait	implementations

//functions

//main

Grouping	definitions	like	this	may	be	helpful	to	standardize	file	layout	and
improve	readability.	Searching	back	and	forth	through	a	long	file	for	symbol
definitions	is	a	common	but	unpleasant	part	of	programming.	It	is	also	a
preventable	problem.

Functional	design	patterns
Aside	from	file	layout,	there	are	a	number	of	functional	design	patterns	that	help
reduce	code	weight	and	redundancy.	When	used	properly,	these	principles	can
help	clarify	design	decisions	and	also	enable	robust	architecture.	Most	design
patterns	are	variants	of	the	single	responsibility	principle.	This	can	take	many
forms	depending	on	the	context,	but	the	intent	is	the	same;	write	code	that	does
one	thing	well,	then	reuse	that	code	as	needed.	I	have	explained	this	as	follows:

Pure	functions:	These	are	functions	with	no	side	effects	or	logical
dependencies	other	than	function	arguments.	A	side	effect	is	a	change	of
state	that	affects	anything	outside	of	the	function,	aside	from	the	return
value.	Pure	functions	are	useful	because	they	can	be	tossed	around	and
combined	and	generally	used	carelessly	without	the	risk	of	unintended
effects.

The	worst	thing	that	can	go	wrong	with	a	pure	function	is	a	bad	return	value	or,	in	extreme
cases,	a	stack	overflow.

It	is	harder	to	cause	bugs	with	pure	functions,	even	when	used	recklessly.
Consider	the	following	example	of	pure	functions,	in	intro_patterns.rs:

fn	pure_function1(x:	u32)	->	u32

{

				x	*	x

}

fn	impure_function(x:	u32)	->	u32

{

				println!("x	=	{}",	x);

				x	*	x

}

Immutability:	Immutability	is	a	pattern	that	helps	encourage	pure
functions.	Rust	variable	bindings	are	immutable	by	default.	This	is	Rust's
not-so-subtle	way	of	encouraging	you	to	avoid	mutable	state.	Don't	do	it.	If
you	absolutely	must,	it	is	possible	to	tag	variables	with	the	mut	keyword	to
allow	reassignment.	This	is	shown	with	the	following	example,	in
intro_patterns.rs:

let	immutable_v1	=	1;

//immutable_v1	=	2;	//invalid

let	mut	mutable_v2	=	1;

mutable_v2	=	2;

Functional	composition:	Functional	composition	is	a	pattern	where	the
output	of	one	function	is	connected	to	the	input	of	another	function.	In	this
fashion,	functions	can	be	chained	together	to	create	complex	effects	from
simple	steps.	This	is	shown	with	the	following	code	snippet,	in
intro_patterns.rs:

let	fsin	=	|x:	f64|	x.sin();

let	fabs	=	|x:	f64|	x.abs();

//feed	output	of	one	into	the	other

let	transform	=	|x:	f64|	fabs(fsin(x));

Higher-order	functions:	These	have	already	been	mentioned	before,	but
we	haven't	used	the	term	yet.	A	HoF	is	a	function	that	accepts	a	function	as
a	parameter.	Many	iterator	methods	are	HoFs.	Consider	the	following
example,	in	intro_patterns.rs:

fn	filter<P>(self,	predicate:	P)	->	Filter<Self,	P>

where	P:	FnMut(&Self::Item)	->	bool

{	...	}

Functors:	If	you	can	get	past	the	name,	these	are	a	simple	and	effective
design	pattern.	They	are	also	very	versatile.	The	concept	is	somewhat
difficult	to	capture	in	its	entirety,	but	you	may	think	of	functors	as	the
inverse	of	functions.	A	function	defines	a	transformation,	accepts	data,	and
returns	the	result	of	the	transformation.	A	functor	defines	data,	accepts	a
function,	and	returns	the	result	of	the	transformation.	A	common	example
of	a	functor	is	the	bound	map	method	that	frequently	appears	on	containers,
such	as	for	a	Vec.	Here	is	an	example,	in	intro_patterns.rs:

let	mut	c	=	0;

for	_	in	vec!['a',	'b',	'c'].into_iter()

			.map(|letter|	{

						c	+=	1;	(letter,	c)

			}){};

"A	monad	is	a	monoid	in	the	category	of	endofunctors,	what's	the	problem?"
–	Philip	Wadler

Monads:	Monads	are	a	common	stumbling	block	for	people	learning	FP.
Monads	and	functors	are	maybe	the	first	words	that	you	may	encounter	on	a
journey	that	goes	deep	into	theoretical	mathematics.	We	won't	go	there.	For
our	purposes,	monads	are	simply	a	trait	with	two	methods.	This	is	shown	in

the	following	code,	in	intro_patterns.rs:

trait	Monad<A>	{

				fn	return_(t:	A)	->	Self;

				//::	A	->	Monad<A>

				fn	bind<MB,B>(m:	Self,	f:	Fn(A)	->	MB)	->	MB

				where	MB:	Monad;

				//::	Monad<A>	->	(A	->	Monad)	->	Monad

}

If	that	doesn't	help	clarify	things	(and	it	probably	doesn't),	a	monad	has
two	methods.	The	first	method	is	the	constructor.	The	second	method	lets
you	bind	an	operation	to	create	another	monad.	Many	common	traits
have	hidden	semi-monads	but,	by	making	the	concept	explicit,	the
concept	becomes	a	strong	design	pattern	instead	of	a	messy	anti-pattern.
Don't	try	to	reinvent	what	you	don't	have	to.

Function	currying:	Function	currying	is	a	technique	that	may	seem	strange
for	anyone	coming	from	a	background	in	object-oriented	or	imperative
languages.	The	reason	for	this	confusion	is	that	in	many	functional
languages,	functions	are	curried	by	default,	whereas	this	is	not	the	case	for
other	languages.	Rust	functions	are	not	curried	by	default.

The	difference	between	curried	and	non-curried	functions	are	that	curried
functions	send	in	parameters	one	by	one,	whereas	non-curried	functions
send	in	parameters	all	at	once.	Looking	at	a	normal	Rust	function
definition,	we	can	see	that	it	is	not	curried.	Consider	the	following	code,
in	intro_patterns.rs:

fn	not_curried(p1:	u32,	p2:	u32)	->	u32

{

				p1	+	p2

}

fn	main()

{

			//and	calling	it

			not_curried(1,	2);

}

A	curried	function	takes	each	parameter	one	by	one,	as	shown	in	the
following,	in	intro_patterns.rs:

fn	curried(p1:	u32)	->	Box<Fn(u32)	->	u32>

{

				Box::new(move	|p2:	u32|	{

								p1	+	p2

				})

}

fn	main()

{

			//and	calling	it

			curried(1)(2);

}

Curried	functions	can	be	used	as	a	function	factory.	The	first	few
arguments	configure	how	the	final	function	should	behave.	The	result	is	a
pattern	that	allows	shorthand	configuration	of	complex	operators.
Currying	complements	all	the	other	design	patterns	by	converting
individual	functions	into	multiple	components.

Lazy	evaluation:	Lazy	evaluation	is	a	pattern	that	is	technically	possible	in
other	languages.	However,	it	is	uncommon	to	see	it	outside	of	FP,	due	to
language	barriers.	The	difference	between	a	normal	expression	and	a	lazy
expression	is	that	a	lazy	expression	will	not	be	evaluated	until	accessed.
Here	is	a	simple	implementation	of	laziness,	implemented	behind	a	function
call	in	intro_patterns.rs:

let	x	=	{	println!("side	effect");	1	+	2	};

let	y	=	||{	println!("side	effect");	1	+	2	};

The	second	expression	will	not	be	evaluated	until	the	function	is	called,	at	which
point	the	code	resolves.	For	lazy	expressions,	side	effects	happen	at	time	of
resolution	instead	of	at	initialization.	This	is	a	poor	implementation	of	laziness,
so	we	will	go	into	further	detail	in	later	chapters.	The	pattern	is	fairly	common,
and	some	operators	and	data	structures	require	laziness	to	work.	A	simple
example	of	necessary	laziness	is	a	lazy	list	that	may	not	otherwise	be	possible	to
create.	The	built-in	Rust	numerical	iterator	(lazy	list)	uses	this	well:	(0..).

Memoization	is	the	last	pattern	that	we	will	introduce	here.	It	may	be	considered
as	more	of	an	optimization	than	design	pattern,	but	due	to	how	common	it	is,	we
should	mention	it	here.	A	memoized	function	only	computes	unique	results	once.
A	simple	implementation	would	be	a	function	guarded	by	a	hash	table.	If	the
parameters	and	result	are	already	in	the	hash	table,	then	skip	the	function	call
and	directly	return	the	result	from	the	hash	table.	Otherwise,	compute	the	result,
put	it	in	the	hash	table,	and	return.	This	process	can	be	implemented	manually	in
any	language,	but	Rust	macros	allow	us	to	write	the	memoization	code	once,	and
reuse	that	code	by	applying	this	macro.	This	is	shown	using	the	following	code

snippet,	in	intro_patterns.rs:

#[macro_use]	extern	crate	cached;

#[macro_use]	extern	crate	lazy_static;

cached!	{

				FIB;

				fn	fib(n:	u64)	->	u64	=	{

								if	n==0	||	n==1	{	return	n	}

								fib(n-1)	+	fib(n-2)

				}

}

fn	main()

{

			fib(30);

}

This	example	makes	use	of	two	crates	and	many	macros.	We	won't	fully	explain
everything	that	is	happening	here	until	the	very	end	of	this	book.	There	is	much
that	is	possible	with	macros	and	metaprogramming.	Caching	function	results	is
just	a	start.

Metaprogramming
The	term	metaprogramming	in	Rust	often	overlaps	with	the	term	macros.	There
are	two	primary	types	of	macros	available	in	Rust:

Recursive
Procedural

Both	types	of	macros	take	as	input	an	abstract	syntax	tree	(AST),	and	produce
one	or	more	AST.

A	commonly	used	macro	is	println.	A	variable	number	of	arguments	and	types
are	joined	with	the	format	string	through	the	use	of	a	macro	to	produce	formatted
output.	To	invoke	recursive	macros	like	this,	invoke	the	macro	just	like	a
function	with	the	addition	of	a	!	before	the	arguments.	Macro	applications	may
alternatively	be	surrounded	by	[]	or	{}:	vec!["this	is	a	macro",	1,	2];

Recursive	macros	are	defined	by	macro_rules!	statements.	The	inside	of	a
macro_rules	definition	is	very	similar	to	that	of	a	pattern-matching	expression.	The
only	difference	is	that	macro_rules!	matches	syntax	instead	of	data.	We	can	use	this
format	to	define	a	reduced	version	of	the	vec	macro.	This	is	shown	in	the
following	code	snippet,	in	intro_metaprogramming.rs:	macro_rules!	my_vec_macro
{
($($x:expr),*)	=>
{
{
let	mut	temp_vec	=	Vec::new();
$(
temp_vec.push($x);
)*
temp_vec
}
}
}

This	definition	accepts	and	matches	only	one	pattern.	It	expects	a	comma-

separated	list	of	expressions.	The	syntax	pattern	($($x:	expr),*)	matches
against	a	comma-separated	list	of	expressions	and	stores	the	result	in	the	plural
variable	$x.	In	the	body	of	the	expression,	there	is	a	single	block.	The	block
defines	a	new	vec,	then	iterates	through	$x*	to	push	each	$x	into	the	vec,	and,
finally,	the	block	returns	the	vec	as	its	result.	The	macro	and	its	expansion	are	as
follows,	in	intro_metaprogramming.rs:	//this
my_vec_macro!(1,	2,	3);

//is	the	same	as	this
{
let	mut	temp_vec	=	Vec::new();
temp_vec.push(1);
temp_vec.push(2);
temp_vec.push(3);
temp_vec
}

It	is	important	to	note	that	expressions	are	moved	as	code,	not	as	values,	so	side
effects	will	be	moved	to	the	evaluating	context,	not	the	defining	context.

Recursive	macro	patterns	match	against	token	strings.	It	is	possible	to	execute
separate	branches	depending	on	which	tokens	are	matched.	A	simple	case	match
looks	like	the	following,	in	intro_metaprogramming.rs:	macro_rules!
my_macro_branch
{
(1	$e:expr)	=>	(println!("mode	1:	{}",	$e));
(2	$e:expr)	=>	(println!("mode	2:	{}",	$e));
}

fn	main()
{
my_macro_branch!(1	"abc");
my_macro_branch!(2	"def");
}

The	name	recursive	macros	comes	from	recursion	in	the	macros,	so	of	course	we
can	call	into	the	macro	that	we	are	defining.	Recursive	macros	could	be	a	quick
way	to	define	a	domain-specific	language.	Consider	the	following	code	snippet,

in	intro_metaprogramming.rs:	enum	DSLTerm	{
TVar	{	symbol:	String	},
TAbs	{	param:	String,	body:	Box<DSLTerm>	},
TApp	{	f:	Box<DSLTerm>,	x:	Box<DSLTerm>	}
}

macro_rules!	dsl
{
(($($e:tt)*))	=>	(dsl!($($e)*));
($e:ident)	=>	(DSLTerm::TVar	{
symbol:	stringify!($e).to_string()
});
(fn	$p:ident	.	$b:tt)	=>	(DSLTerm::TAbs	{
param:	stringify!($p).to_string(),
body:	Box::new(dsl!($b))
});
($f:tt	$x:tt)	=>	(DSLTerm::TApp	{
f:	Box::new(dsl!($f)),
x:	Box::new(dsl!($x))
});
}

The	second	form	of	macro	definitions	is	procedural	macros.	Recursive	macros
can	be	thought	of	as	a	nice	syntax	to	help	define	procedural	macros.	Procedural
macros,	on	the	other	hand,	are	the	most	general	form.	There	are	many	things	you
can	do	with	procedural	macros	that	are	simply	impossible	with	the	recursive
form.

Here,	we	can	grab	the	TypeName	of	a	struct	and	use	that	to	automatically	generate	a
trait	implementation.	Here	is	the	macro	definition,	in	intro_metaprogramming.rs:	#!
[crate_type	=	"proc-macro"]
extern	crate	proc_macro;
extern	crate	syn;
#[macro_use]
extern	crate	quote;
use	proc_macro::TokenStream;
#[proc_macro_derive(TypeName)]

pub	fn	type_name(input:	TokenStream)	->	TokenStream
{
//	Parse	token	stream	into	input	AST
let	ast	=	syn::parse(input).unwrap();
//	Generate	output	AST
impl_typename(&ast).into()
}

fn	impl_typename(ast:	&syn::DeriveInput)	->	quote::Tokens
{
let	name	=	&ast.ident;
quote!
{
impl	TypeName	for	#name
{
fn	typename()	->	String
{
stringify!(#name).to_string()
}
}
}
}

The	corresponding	macro	invocation	looks	like	the	following,	in
intro_metaprogramming.rs:	#[macro_use]
extern	crate	metaderive;

pub	trait	TypeName
{
fn	typename()	->	String;
}

#[derive(TypeName)]
struct	MyStructA
{
a:	u32,

b:	f32
}

As	you	can	see,	procedural	macros	are	a	bit	more	complicated	to	set	up.
However,	the	benefit	is	then	that	all	processing	is	done	directly	with	normal	Rust
code.	These	macros	permit	use	of	any	syntactic	information	in	unstructured
format	to	generate	more	code	structures	before	compilation.

Procedural	macros	are	handled	as	separate	modules	to	be	precompiled	and
executed	during	normal	compiler	execution.	The	information	provided	to	each
macro	is	localized,	so
whole	program	consideration	is	not	possible.	However,	the	available	local
information	is	sufficient	to	achieve	some	fairly	complicated	effects.

Summary
In	this	chapter,	we	briefly	outlined	the	major	concepts	that	will	appear
throughout	this	book.	From	the	code	examples,	you	should	now	be	able	to
visually	identify	functional	style.	We	also	mentioned	some	of	the	reasons	why
these	concepts	are	useful.	In	the	remaining	chapters,	we	will	provide	full	context
to	when	and	why	each	technique	would	be	appropriate.	In	that	context,	we	will
also	provide	the	knowledge	required	to	master	the	techniques	and	start	using
functional	practices.

From	this	chapter,	we	learned	to	parameterize	as	much	as	possible,	and	that
functions	can	be	used	as	parameters,	to	define	complex	behavior	by	combining
simple	behaviors,	and	that	it	is	safe	to	use	threads	however	you	want	in	Rust	as
long	as	it	compiles.

This	book	is	structured	to	introduce	simpler	concepts	first,	then,	as	the	book
continues,	some	concepts	may	become	more	abstract	or	technical.	Also,	all
techniques	will	be	introduced	in	the	context	of	an	ongoing	project.	The	project
will	control	an	elevator	system,	and	the	requirements	will	gradually	become
more	demanding	as	the	book	progresses.

Questions
1.	 What	is	a	function?
2.	 What	is	a	functor?
3.	 What	is	a	tuple?
4.	 What	control	flow	expression	was	designed	for	use	with	tagged	unions?
5.	 What	is	the	name	for	a	function	with	a	function	as	a	parameter?
6.	 How	many	times	will	fib	be	called	in	memoized	fib(20)?
7.	 What	datatypes	can	be	sent	over	a	channel?
8.	 Why	do	functions	need	to	be	boxed	when	returned	from	a	function?
9.	 What	does	the	move	keyword	do?
10.	 How	could	two	variables	share	ownership	of	a	single	variable?

	

	

Further	reading
Packt	has	many	other	great	resources	for	learning	Rust:

https://www.packtpub.com/application-development/rust-programming-example

https://www.packtpub.com/application-development/learning-rust

For	basic	documentation	and	a	tutorial,	please	refer	here:

Tutorial:	https://doc.rust-lang.org/book/first-edition/
Documentation:	https://doc.rust-lang.org/stable/reference/

https://www.packtpub.com/application-development/rust-programming-example
https://www.packtpub.com/application-development/learning-rust
https://doc.rust-lang.org/book/first-edition/
https://doc.rust-lang.org/stable/reference/

Functional	Control	Flow
The	control	flow	is	the	most	basic	building	block	of	programming.	Early
languages	had	no	concept	of	data	structures	or	functions,	only	program	flow.
These	control	flow	structures	have	evolved	over	time,	from	simple	branches	and
loops	to	the	complex	value	expressions	available	in	Rust.

In	this	chapter,	we	will	start	developing	the	project	that	will	form	the	basis	of	all
code	examples	in	this	book.	The	first	project's	requirements	are	introduced
immediately.	Then,	we	will	provide	you	with	actionable	steps	to	transform
project	requirements	into	a	code	outline	with	tests.	Lastly,	we	will	develop	code
for	the	full	deliverable.

Learning	outcomes:

Gathering	project	requirements
Architecting	a	solution	based	on	project	requirements
Using	and	recognizing	expressions	in	functional	style
Testing	the	solution	with	integration	and	unit	tests

	

	

Technical	requirements
A	recent	version	of	Rust	is	necessary	to	run	the	examples	provided:

https://www.rust-lang.org/en-US/install.html

This	chapter's	code	is	also	available	on	GitHub:

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Specific	installation	and	build	instructions	are	also	included	in	each	chapter's
README.md	file.

https://www.rust-lang.org/en-US/install.html
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Designing	the	program
To	design	the	program,	let's	look	at	the	various	aspects	required	for	the	project.

Gathering	project	requirements
Consider	this	situation:	Your	engineering	firm	is	being	considered	for	a	contract
to	design	software	to	control	the	elevators	for	a	real	estate	developer.	The
contract	lists	three	buildings	under	development	with	various	heights	and	non-
uniform	elevator	designs.	The	elevator	designs	are	being	finalized	by	other
subcontractors	and	will	become	available	shortly	after	the	software	contract	is
awarded.

To	submit	your	proposal,	your	firm	should	demonstrate	the	basic	capabilities	of
your	elevator	control	software.	Then,	once	awarded,	you	will	be	expected	to
integrate	these	capabilities	into	the	final	software,	along	with	modifications	that
are	necessary	to	accommodate	the	physical	elevator	specifications	and
behaviors.

To	win	the	proposal,	your	team	agrees	on	several	key	points	on	which	to
outperform	competitors.	Namely,	your	elevators	should	do	the	following:

Take	less	time	moving	between	floors
Stop	at	each	floor	location	more	precisely
Provide	a	smoother	ride	for	passengers	in	transit

As	a	program	deliverable	to	accompany	the	project	proposal,	you	are	expected	to
provide	a	simulation	of	elevator	behavior.	You	are	responsible	for	further	details
and	implementation.

The	following	questions	should	be	resolved	now:

What	data	will	the	program	access	and	store?
What	input	will	the	program	expect?
What	output	should	the	program	produce?

After	some	deliberation,	your	team	agrees	on	some	behaviors:

The	program	should	emphasize	the	elevator's	location,	velocity,	and
acceleration.	Velocity	determines	ride	duration.	Acceleration	determines

ride	comfort.	The	location,	at	rest,	determines	stop	precision.	These	are	the
key	selling	points	that	your	company	will	emphasize,	so	the	demonstration
software	should	mirror	the	same	message.
As	input,	the	program	should	take	a	file	describing	the	number	of	floors	and
floor	height,	and	finally	a	list	of	floor	requests	for	the	elevator	to	process.
The	output	of	the	program	should	be	real-time	information	regarding	the
elevator's	location,	velocity,	and	acceleration.	After	processing	all	floor
requests,	the	program	should	print	average	and	standard	deviations	for
location,	velocity,	and	acceleration.

Architecting	a	code	map	from
requirements
To	outline	our	code	solution,	we	will	use	the	stubs	method.	To	use	this	process,
we	simply	start	a	code	project	normally	and	fill	out	high-level	details	as	we	think
of	them.	Details	will	be	left	unimplemented	until	we	finalize	the	outline.	After
we	are	satisfied	with	the	overall	program	design,	then	we	can	start	implementing
program	logic.	We	will	begin	the	project	now.

	

	

	

Creating	a	Rust	project
To	create	a	new	Rust	project,	we	will	perform	the	following	steps	(alternatively,
you	can	invoke	cargo	new):

1.	 Create	a	new	folder	for	the	Rust	project
2.	 Create	a	Cargo.toml	file,	which	is	shown	as	follows:

[package]

name	=	"elevator"

version	=	"1.0.0"

[dependencies]

3.	 Create	a	src/main.rs	file,	as	follows:

fn	main()

{

			println!("main")

}

Now,	we	can	build	the	project	with	cargo	build.

	

	

	

Writing	stubs	for	each	program
requirement
Program	requirements	are	typically	phrased	as	outcomes.	What	effects	should
this	program	have	when	you	run	it?	Answering	this	question	with	code	is	often
straightforward.	Here	is	a	list	of	steps	to	methodically	transform	project
requirements	into	code:

1.	 List	all	program	requirements
2.	 List	dependencies	or	prerequisites	for	each	requirement
3.	 Create	a	dependency	graph	from	the	requirements	and	dependencies	lists
4.	 Write	stubs	that	implement	the	dependency	graph

With	practice,	these	steps	can	be	combined	into	a	single	step	of	writing	the	stub
code.	However,	if	you	become	overwhelmed	during	the	architecture	phase	of	a
project,	then	it	may	be	helpful	to	go	through	these	steps	explicitly.	This	is	a
reliable	method	to	break	down	complex	problems	into	smaller	problems:

1.	 Firstly,	to	list	all	program	requirements,	from	earlier	consideration,	we
know	that	we	need	to	store	real-time	data	for	location,	velocity,	and
acceleration.	The	program	should	accept	an	input	file	or	standard	input
describing	the	number	of	floors,	floor	height,	and	a	list	of	floor	requests	to
be	processed.	The	output	of	the	program	should	be	real-time	elevator
location,	velocity,	and	acceleration,	with	a	summary,	upon	completion,	of
all	transport	requests.	The	summary	should	list	average	and	standard
deviation	for	location,	velocity,	and	acceleration.

2.	 Secondly,	list	dependencies	or	prerequisites	for	each	requirement.	The	data
seems	to	be	atomic	with	no	dependencies	or	prerequisites.	The	program
flow	seems	to	naturally	take	the	form	of	a	polling	loop,	updating	real-time
state	information	from	sensors	and	issuing	motion	commands	once	per
loop.	There	is	a	time-lagged	circular	dependency	between	elevator	state	and
motion	commands:	motion	commands	are	chosen	based	on	state,	and	the
next	loop	will	realize	the	time-adjusted	effect	of	those	commands.

3.	 Thirdly,	create	a	dependency	graph	from	the	requirements	and
dependencies	lists	with	the	following:

1.	 Store	the	location,	velocity,	and	acceleration	state
2.	 Store	the	motor	input	voltage
3.	 Store	the	input	building	description	and	floor	requests
4.	 Parse	the	input	and	store	as	building	description	and	floor	requests
5.	 Loop	while	there	are	remaining	floor	requests:

1.	 Update	the	location,	velocity,	and	acceleration
2.	 If	the	next	floor	request	in	the	queue	is	satisfied,	then	remove	it

from	the	queue
3.	 Adjust	motor	control	to	process	the	next	floor	request
4.	 Print	real-time	statistics

6.	 Print	the	summary
4.	 Fourthly,	write	stubs	that	implement	the	dependency	graph.	We	will	update

src/main.rs	to	implement	this	stub	logic.	Note	that	the	variables,	declared	by
let	bindings,	are	stored	inside	the	main	function.	The	mutable	state	must	be
stored	inside	a	function	or	a	data	structure.	This	is	shown	in	the	following
code	block:

pub	fn	run_simulation()

{

			//1.	Store	location,	velocity,	and	acceleration	state

			let	mut	location:	f64	=	0.0;	//	meters

			let	mut	velocity:	f64	=	0.0;	//	meters	per	second

			let	mut	acceleration:	f64	=	0.0;	//	meters	per	second	squared

			

			//2.	Store	motor	input	voltage

			let	mut	up_input_voltage:	f64	=	0.0;

			let	mut	down_input_voltage:	f64	=	0.0;

			//3.	Store	input	building	description	and	floor	requests

			let	mut	floor_count:	u64	=	0;

			let	mut	floor_height:	f64	=	0.0;	//	meters

			let	mut	floor_requests:	Vec<u64>	=	Vec::new();

			//4.	Parse	input	and	store	as	building	description	and	floor	requests

			//5.	Loop	while	there	are	remaining	floor	requests

			while	floor_requests.len()	>	0

			{

						//5.1.	Update	location,	velocity,	and	acceleration

						//5.2.	If	next	floor	request	in	queue	is	satisfied,	then	remove	from	queue

						//5.3.	Adjust	motor	control	to	process	next	floor	request

						//5.4.	Print	realtime	statistics

			}

			//6.	Print	summary

			println!("summary");

}

fn	main()

{

			run_simulation()

}

Alternatively,	we	could	have	written	the	loop	as	a	separate	function.	The
function	would	check	the	condition,	and	the	function	would	potentially	call	itself
again.	When	a	function	calls	itself,	this	is	called	recursion.	Recursion	is	an
extremely	common	and	important	pattern	in	functional	programming.	However,
this	specific	type	of	recursion,	known	as	tail	recursion,	is	not	recommended	in
Rust	currently	(see	RFC	#271	(https://github.com/rust-lang/rfcs/issues/271)—
without	this	proposed	optimization,	the	tail	recursion	may	unnecessarily	use
extra	stack	space	and	run	out	of	memory).

The	recursive	loop	code	would	become	as	follows:

fn	process_floor_requests(...)

{

			if	floor_requests.len()	==	0	{	return;	}

			//5.1	Update	location,	velocity,	and	acceleration

			//5.2	If	next	floor	request	in	queue	is	satisfied,	then	remove	from	queue

			//5.3	Adjust	motor	control	to	process	next	floor	request

			//5.4	Print	realtime	statistics

			//tail	recursion

			process_floor_requests(...)

}

	

	

https://github.com/rust-lang/rfcs/issues/271

Implementing	program	logic
Once	a	stub	program	has	been	created,	we	can	proceed	to	replace	stubs	with
working	code.

Filling	in	the	blanks
Now	that	we	have	code	stubs	and	a	map	of	each	feature	that	needs	to	be
implemented,	we	can	begin	writing	the	code	logic.	At	this	point,	if	you	are
working	on	a	team,	then	this	would	be	a	good	time	to	divide	the	work.	The
architecture	phase	may	be	done	by	one	person,	or	as	a	team,	but	it	can't	be	done
in	parallel.	In	contrast,	the	implementation	phase	can	be	broken	into	parts	to
work	on	separately.

	

	

	

Parsing	input	and	storing	as	building
description	and	floor	requests
To	parse	input,	we	first	need	to	decide	whether	to	expect	input	from	stdin	or	from
a	file.	We	will	adopt	the	convention	that	if	a	filename	is	provided	to	the	program,
then	we	will	read	from	the	file;	if	the	file	name	is	-	then	read	from	stdin,	and
otherwise	read	from	test1.txt.

Using	the	Rust	std::env	package	and	a	pattern	match	statement,	we	can	accomplish
this	quite	easily.	This	is	shown	as	follows:	let	buffer	=	match	env::args().nth(1)	{
Some(ref	fp)	if	*fp	==	"-".to_string()	=>	{
let	mut	buffer	=	String::new();
io::stdin().read_to_string(&mut	buffer)
.expect("read_to_string	failed");
buffer
},
None	=>	{
let	fp	=	"test1.txt";
let	mut	buffer	=	String::new();
File::open(fp)
.expect("File::open	failed")
.read_to_string(&mut	buffer)
.expect("read_to_string	failed");
buffer
},
Some(fp)	=>	{
let	mut	buffer	=	String::new();
File::open(fp)
.expect("File::open	failed")
.read_to_string(&mut	buffer)
.expect("read_to_string	failed");
buffer
}
};

Now,	we	need	to	parse	the	string's	input.	For	each	line	in	the	input,	we	store	the
parsed	value	as	either	a	floor	count,	floor	height,	or	floor	request,	in	that	order.
Here	is	the	code	to	implement	this:	for	(li,l)	in	buffer.lines().enumerate()	{
if	li==0	{
floor_count	=	l.parse::<u64>().unwrap();
}	else	if	li==1	{
floor_height	=	l.parse::<f64>().unwrap();
}	else	{
floor_requests.push(l.parse::<u64>().unwrap());
}
}

Updating	location,	velocity,	and
acceleration
Here,	we	need	to	update	the	program's	state	to	reflect	physical	changes	in	the
state	variables	since	the	previous	loop	iteration.	All	of	these	changes	depend	on
knowledge	of	how	much	time	has	elapsed	since	the	previous	iteration,	but	we
don't	have	that	information	store.	So,	let's	make	some	small	changes	to	our	code.

1.	 Store	a	timestamp	of	the	previous	iteration	outside	of	the	loop:

let	mut	prev_loop_time	=	Instant::now();

2.	 Calculate	the	elapsed	time,	then	overwrite	the	previous	timestamp:

let	now	=	Instant::now();

let	dt	=	now.duration_since(prev_loop_time)

												.as_fractional_secs();

prev_loop_time	=	now;

3.	 To	improve	accuracy,	sleep	for	a	while	at	the	end	of	the	loop	(it	is	difficult
to	accurately	record	sub-millisecond	measurements):

thread::sleep(time::Duration::from_millis(10));

Now,	we	can	start	to	calculate	the	new	location,	velocity,	and	acceleration.	The
location	is	calculated	as	previous	location	plus	velocity	over	time.	Velocity	is
calculated	as	previous	velocity	plus	acceleration	over	time.	Acceleration	is
calculated	as	F=ma	and	will	be	calculated	from	the	motor	force	and	carriage
weight.	At	this	point,	we	realize	that	carriage	weight	is	not	specified	in	the	input
file,	but	after	some	discussion,	the	team	decides	to	use	a	standard	carriage
weight	rather	than	change	the	input	format.

With	a	little	research,	you	find	that	an	elevator	carriage	weighs	about	1,200	kg.
Similarly,	you	estimate	that	a	simple	DC	motor	can	produce	roughly	eight
newtons	of	force	per	volt.	The	resulting	code	looks	like	the	following:

location	=	location	+	velocity	*	dt;

velocity	=	velocity	+	acceleration	*	dt;

acceleration	=	{

			let	F	=	(up_input_voltage	-	down_input_voltage)	*	8.0;

			let	m	=	1200000.0;

			//-9.8	is	an	approximation	of	acceleration	due	to	gravity

			-9.8	+	F/m

};

	

	

If	the	next	floor	request	in	the	queue
is	satisfied,	then	remove	it	from	the
queue
To	complete	a	floor	request,	we	must	be	at	the	destination	floor	and	stopped.	We
assume	that	a	sufficiently	low	velocity	can	be	stopped	with	some	sort	of	brake.
This	will	hold	us	in	place	steadily	until	passengers	depart	or	enter	the	elevator.
The	code	is	as	follows:

let	next_floor	=	floor_requests[0];

if	(location	-	(next_floor	as	f64)*floor_height).abs()	<	0.01

			&&	velocity.abs()	<	0.01

{

			velocity	=	0.0;

			floor_requests.remove(0);

}

	

	

Adjusting	motor	control	to	process
the	next	floor	request
To	adjust	motor	control,	we	need	to	decide	how	much	acceleration	we	want,	and
then	calculate	how	much	force	is	required	to	achieve	the	target	acceleration.
According	to	our	objectives,	we	want	shorter	travel	time,	less	motion	sickness,
and	accurate	stop	locations.

The	metrics	that	we	should	optimize	to	achieve	these	objectives	are	to	maximize
average	velocity,	minimize	acceleration,	and	minimize	stop	location	error.	All	of
these	objectives	compete	with	one	another	for	precedence,	so	we	will	need	to
compromise	between	each	to	achieve	good	overall	performance.

With	some	research,	you	find	that	comfortable	acceleration	is	limited	to	between
1	and	1.5	meters	per	second	squared.	You	decide	to	aim	for	a	maximum	of	1
m/s2,	with	a	slack	of	up	to	1.5	m/s2	in	exceptional	circumstances.

For	velocity,	you	decide	that	carriage	speeds	over	5	m/s	are	unsafe,	so	you	will
implement	a	maximum	velocity,	otherwise,	the	velocity	should	always	be
maximized	to	reach	the	next	floor.

For	location	precision,	the	calculation	of	target	acceleration	versus	current
velocity	versus	target	destination	is	essential.	Here,	you	will	try	to	keep	the
acceleration	near	1	m/s2,	with	significant	room	for	additional	acceleration.	When
sufficiently	close	to	the	destination,	it	may	be	necessary	to	use	a	different
acceleration	target	to	make	smaller	motions	and	velocity	adjustments.

To	implement	this	with	code,	we	first	calculate	the	deceleration	range.	This	is
defined	as	the	distance	from	which,	at	the	current	velocity,	we	would	need	to
decelerate	at	greater	than	1	m/s2	to	stop	at	the	destination.	Our	acceleration
buffer	provides	some	room	for	correction,	making	this	a	safe	target	from	which
to	start	decelerating	before	reaching	the	next	floor.	This	is	shown	in	the
following	code:	//it	will	take	t	seconds	to	decelerate	from	velocity	v	at	-1	m/s^2
let	t	=	velocity.abs()	/	1.0;

//during	which	time,	the	carriage	will	travel	d=t	*	v/2	meters
//at	an	average	velocity	of	v/2	before	stopping
let	d	=	t	*	(velocity/2.0);

//l	=	distance	to	next	floor
let	l	=	(location	-	(next_floor	as	f64)*floor_height).abs();

To	calculate	the	target	acceleration,	we	have	three	cases	to	consider:

If	we	are	in	the	deceleration	range,	then	we	should	slow	down
If	we	are	not	in	the	deceleration	range	and	not	at	maximum	velocity,	then
we	should	accelerate
If	we	are	outside	of	the	deceleration	range	but	already	at	maximum	velocity,
then	we	should	not	change	velocity:

let	target_acceleration	=	{

			//are	we	going	up?

			let	going_up	=	location	<	(next_floor	as	f64)*floor_height;

			//Do	not	exceed	maximum	velocity

			if	velocity.abs()	>=	5.0	{

						//if	we	are	going	up	and	actually	going	up

						//or	we	are	going	down	and	actually	going	down

						if	(going_up	&&	velocity>0.0)

						||	(!going_up	&&	velocity<0.0)	{

									0.0

						//decelerate	if	going	in	wrong	direction

						}	else	if	going_up	{

									1.0

						}	else	{

									-1.0

						}

			//if	within	comfortable	deceleration	range	and	moving	in	right	direction,	decelerate

			}	else	if	l	<	d	&&	going_up==(velocity>0.0)	{

						if	going_up	{

									-1.0

						}	else	{

									1.0

						}

			//else	if	not	at	peak	velocity,	accelerate

			}	else	{

						if	going_up	{

									1.0

						}	else	{

									-1.0

						}

			}

};

Finally,	using	the	target	acceleration,	we	can	calculate	how	much	voltage	we
should	apply	to	each	motor	to	achieve	the	desired	acceleration.	By	inverting	the
formula	previously	used	to	calculate	acceleration,	we	can	now	calculate	our
desired	voltage	from	the	target	acceleration,	as	follows:	let
gravity_adjusted_acceleration	=	target_acceleration	+	9.8;
let	target_force	=	gravity_adjusted_acceleration	*	1200000.0;
let	target_voltage	=	target_force	/	8.0;
if	target_voltage	>	0.0	{
up_input_voltage	=	target_voltage;
down_input_voltage	=	0.0;
}	else	{
up_input_voltage	=	0.0;
down_input_voltage	=	target_voltage.abs();
};

Printing	real-time	statistics
To	print	real-time	statistics,	we	will	use	a	console	formatting	library.	This	allows
us	to	easily	move	the	cursor	around	the	screen	and	write	clear	and	easily
formattable	text.	This	is	depicted	as	follows:

1.	 To	get	started,	we	should	grab	some	information	and	a	handle	to	stdout	and
store	it	outside	of	our	loop.	This	is	shown	in	the	following	code:

let	termsize	=	termion::terminal_size().ok();

let	termwidth	=	termsize.map(|(w,_)|	w-2).expect("termwidth");

let	termheight	=	termsize.map(|(_,h)|	h-2).expect("termheight");

let	mut	_stdout	=	io::stdout();	//lock	once,	instead	of	once	per	write

let	mut	stdout	=	_stdout.lock().into_raw_mode().unwrap();

2.	 Inside	the	loop,	let's	start	by	clearing	a	space	to	render	our	output:

print!("{}{}",	clear::All,	cursor::Goto(1,	1));

for	tx	in	0..(termwidth-1)

{

			for	ty	in	0..(termheight-1)

			{

						write!(stdout,	"{}",	cursor::Goto(tx+1,	ty+1));

						write!(stdout,	"{}",	"	");

			}

}

3.	 Then,	we	can	render	the	elevator	shaft	and	carriage.	The	elevator	shaft	will
be	simple	brackets,	one	for	each	floor	on	the	left	and	right.	The	elevator
carriage	will	be	an	X	mark	placed	on	the	floor	closest	to	the	current	carriage
location.	We	calculate	each	floor	location	by	multiplying	floor_height	by
floor	offset	from	the	ground	floor.	Then,	we	compare	each	floor	location	to
the	carriage	locations	to	find	the	closest	one.	The	code	is	as	follows:

print!("{}{}{}",	clear::All,	cursor::Goto(1,	1),	cursor::Hide);

let	carriage_floor	=	(location	/	floor_height).floor()	as	u64;

let	carriage_floor	=	cmp::max(carriage_floor,	0);

let	carriage_floor	=	cmp::min(carriage_floor,	floor_count-1);

for	tx	in	0..(termwidth-1)

{

			for	ty	in	0..(termheight-1)

			{

						write!(stdout,	"{}",	cursor::Goto(tx+1,	ty+1));

						if	tx==0	&&	(ty	as	u64)<floor_count	{

									write!(stdout,	"{}",	"[");

						}	else	if	tx==1	&&	(ty	as	u64)==((floor_count-1)-carriage_floor)	{

									write!(stdout,	"{}",	"X");

						}	else	if	tx==2	&&	(ty	as	u64)<floor_count	{

									write!(stdout,	"{}",	"]");

						}	else	{

									write!(stdout,	"{}",	"	");

						}

			}

}

stdout.flush().unwrap();

4.	 Now,	we	need	to	print	real-time	statistics.	In	addition	to	location,	velocity,
and	acceleration,	let's	also	display	the	nearest	floor	and	motor	input	voltage,
as	follows:

write!(stdout,	"{}",	cursor::Goto(6,	1));

write!(stdout,	"Carriage	at	floor	{}",	carriage_floor+1);

write!(stdout,	"{}",	cursor::Goto(6,	2));

write!(stdout,	"Location	{}",	location);

write!(stdout,	"{}",	cursor::Goto(6,	3));

write!(stdout,	"Velocity	{}",	velocity);

write!(stdout,	"{}",	cursor::Goto(6,	4));

write!(stdout,	"Acceleration	{}",	acceleration);

write!(stdout,	"{}",	cursor::Goto(6,	5));

write!(stdout,	"Voltage	[up-down]	{}",	up_input_voltage-down_input_voltage);

5.	 Here,	we	find	that	the	Terminal	screen	is	tearing,	so	let's	adjust	the	output	to
use	a	buffer:

let	mut	terminal_buffer	=	vec!['	'	as	u8;	(termwidth*termheight)	as	usize];

for	ty	in	0..floor_count

{

			terminal_buffer[(ty*termwidth	+	0)	as	usize]	=	'['	as	u8;

			terminal_buffer[(ty*termwidth	+	1)	as	usize]	=

						if	(ty	as	u64)==((floor_count-1)-carriage_floor)	{	'X'	as	u8	}

						else	{	'	'	as	u8	};

			terminal_buffer[(ty*termwidth	+	2)	as	usize]	=	']'	as	u8;

			terminal_buffer[(ty*termwidth	+	termwidth-2)	as	usize]	=	'\r'	as	u8;

			terminal_buffer[(ty*termwidth	+	termwidth-1)	as	usize]	=	'\n'	as	u8;

}

let	stats	=	vec![

			format!("Carriage	at	floor	{}",	carriage_floor+1),

			format!("Location	{}",	location),

			format!("Velocity	{}",	velocity),

			format!("Acceleration	{}",	acceleration),

			format!("Voltage	[up-down]	{}",	up_input_voltage-down_input_voltage)

];

for	sy	in	0..stats.len()

{

			for	(sx,sc)	in	stats[sy].chars().enumerate()

			{

						terminal_buffer[sy*(termwidth	as	usize)	+	6	+	sx]	=	sc	as	u8;

			}

}

write!(stdout,	"{}",	String::from_utf8(terminal_buffer).unwrap());	

Now,	our	screen	will	clearly	display	real-time	information	until	the	loop	ends.

	

	

	

Printing	summary
To	print	our	summary,	we	should	include	averages	and	standard	deviations	for
location,	velocity,	and	acceleration.	Additionally,	it	may	be	interesting	to	see
statistics	for	motor	control,	so	let's	also	display	voltage	statistics.	At	this	point,
we	realize	that	the	data	is	not	storing	enough	information	to	calculate	average	or
standard	deviation	numbers.

To	calculate	the	average	value	for	a	variable,	we	will	need	to	calculate	a	sum	of
each	recorded	value	and	record	a	count	of	how	many	data	points	we	recorded.
Then,	we	will	calculate	the	average	value	by	dividing	the	total	value	by	the
record	count,	giving	us	our	estimation	of	the	average	value	over	time.

To	calculate	the	standard	deviation,	we	will	require	a	full	record	of	each
observed	value	of	the	variable.	Additionally,	the	average	value	and	record	count
are	required.	Then,	we	will	use	the	following	formula	to	calculate	standard

deviation:	

To	store	our	data,	we	need	to	declare	new	variables	before	our	loop	starts:

1.	 To	store	data	using	new	variables,	use	the	following	code:

let	mut	record_location	=	Vec::new();

let	mut	record_velocity	=	Vec::new();

let	mut	record_acceleration	=	Vec::new();

let	mut	record_voltage	=	Vec::new();

2.	 Then,	at	each	iteration,	before	calculating	the	new	values,	we	will	store
each	data	point:

record_location.push(location);

record_velocity.push(velocity);

record_acceleration.push(acceleration);

record_voltage.push(up_input_voltage-down_input_voltage);

3.	 Finally,	we	calculate	the	statistics:

let	record_location_N	=	record_location.len();

let	record_location_sum:	f64	=	record_location.iter().sum();

let	record_location_avg	=	record_location_sum	/	(record_location_N	as	f64);

let	record_location_dev	=	(

			record_location.clone().into_iter()

			.map(|v|	(v	-	record_location_avg).powi(2))

			.fold(0.0,	|a,	b|	a+b)

			/	(record_location_N	as	f64)

).sqrt();

let	record_velocity_N	=	record_velocity.len();

let	record_velocity_sum:	f64	=	record_velocity.iter().sum();

let	record_velocity_avg	=	record_velocity_sum	/	(record_velocity_N	as	f64);

let	record_velocity_dev	=	(

			record_velocity.clone().into_iter()

			.map(|v|	(v	-	record_velocity_avg).powi(2))

			.fold(0.0,	|a,	b|	a+b)

			/	(record_velocity_N	as	f64)

).sqrt();

let	record_acceleration_N	=	record_acceleration.len();

let	record_acceleration_sum:	f64	=	record_acceleration.iter().sum();

let	record_acceleration_avg	=	record_acceleration_sum	/	(record_acceleration_N	as	f64);

let	record_acceleration_dev	=	(

			record_acceleration.clone().into_iter()

			.map(|v|	(v	-	record_acceleration_avg).powi(2))

			.fold(0.0,	|a,	b|	a+b)

			/	(record_acceleration_N	as	f64)

).sqrt();

let	record_voltage_N	=	record_voltage.len();

let	record_voltage_sum	=	record_voltage.iter().sum();

let	record_voltage_avg	=	record_voltage_sum	/	(record_voltage_N	as	f64);

let	record_voltage_dev	=	(

			record_voltage.clone().into_iter()

			.map(|v|	(v	-	record_voltage_avg).powi(2))

			.fold(0.0,	|a,	b|	a+b)

			/	(record_voltage_N	as	f64)

).sqrt();

4.	 Before	exiting	the	program,	we	must	print	the	statistics:

write!(stdout,	"{}{}{}",	clear::All,	cursor::Goto(1,	1),	cursor::Show).unwrap();

write!(stdout,	"Average	of	location	{:.6}\r\n",	record_location_avg);

write!(stdout,	"Standard	deviation	of	location	{:.6}\r\n",	record_location_dev);

write!(stdout,	"\r\n");

write!(stdout,	"Average	of	velocity	{:.6}\r\n",	record_velocity_avg);

write!(stdout,	"Standard	deviation	of	velocity	{:.6}\r\n",	record_velocity_dev);

write!(stdout,	"\r\n");

write!(stdout,	"Average	of	acceleration	{:.6}\r\n",	record_acceleration_avg);

write!(stdout,	"Standard	deviation	of	acceleration	{:.6}\r\n",	record_acceleration_dev);

write!(stdout,	"\r\n");

write!(stdout,	"Average	of	voltage	{:.6}\r\n",	record_voltage_avg);

write!(stdout,	"Standard	deviation	of	voltage	{:.6}\r\n",	record_voltage_dev);

write!(stdout,	"\r\n");

stdout.flush().unwrap();

Now,	having	assembled	the	pieces,	we	have	a	complete	simulation.	Running	the

program	on	a	test	input	produces	a	nice	graphic	and	result	summary.	This	should
be	sufficient	to	accompany	the	initial	proposal.

Breaking	down	long	segments	into
components
Once	the	project	is	functional,	we	can	begin	to	look	for	opportunities	to	simplify
the	design	and	eliminate	redundancies.	The	first	step	here	should	be	to	look	for
patterns	of	similar	code.	Our	summary	statistics	are	a	very	good	example	of	code
that	should	be	cleaned	up.	We	have	four	variables	that	we	track	and	display
statistics	for.	The	calculation	of	each	statistic	is	identical,	yet	we	repeat	the
calculation	explicitly	for	each	variable.	There	are	also	similarities	in	the	output
formatting,	so	let's	also	clean	that	up.

To	fix	redundancy,	the	first	question	to	ask	is	whether	the	code	can	be	rewritten
as	a	function.	Here,	we	do	have	the	opportunity	to	use	this	pattern	by	creating	a
function	that	accepts	the	variable	data	and	prints	the	summary.	This	is	done	as
follows:

1.	 We	can	write	this	function,	which	is	shown	as	follows:

fn	variable_summary<W:	Write>(stdout:	&mut	raw::RawTerminal<W>,	vname:	&str,	data:	Vec<f64>)

{

			//calculate	statistics

			let	N	=	data.len();

			let	sum:	f64	=	data.iter().sum();

			let	avg	=	sum	/	(N	as	f64);

			let	dev	=	(

						data.clone().into_iter()

						.map(|v|	(v	-	avg).powi(2))

						.fold(0.0,	|a,	b|	a+b)

						/	(N	as	f64)

).sqrt();

			//print	formatted	output

			write!(stdout,	"Average	of	{:25}{:.6}\r\n",	vname,	avg);

			write!(stdout,	"Standard	deviation	of	{:14}{:.6}\r\n",	vname,	dev);

			write!(stdout,	"\r\n");

}

2.	 To	call	the	function,	we	provide	each	name	and	data	variable:

write!(stdout,	"{}{}{}",	clear::All,	cursor::Goto(1,	1),	cursor::Show).unwrap();

variable_summary(&mut	stdout,	"location",	record_location);

variable_summary(&mut	stdout,	"velocity",	record_velocity);

variable_summary(&mut	stdout,	"acceleration",	record_acceleration);

variable_summary(&mut	stdout,	"voltage",	record_voltage);

stdout.flush().unwrap();

This	rewrite	improves	the	program	in	two	significant	ways:

The	statistics	calculation	is	much	easier	to	read	and	debug
Using	the	statistics	and	summary	function	involves	very	little	redundancy,
which	reduces	the	likelihood	of	accidentally	using	incorrect	variable	names
or	other	common	errors

Short,	literate	code	is	robust	and	prevents	mistakes.	Long,	redundant	code	is
brittle	and	error-prone.

	

	

	

Searching	for	abstractions
After	writing	a	code	draft,	it	is	a	good	practice	to	read	through	the	code	again
and	look	for	possible	improvements.	When	reviewing	a	project,	look	specifically
for	ugly	code,	anti-patterns,	and	unchecked	assumptions.	After	review,	we	find
the	code	does	not	need	correcting.

We	should,	however,	point	out	one	functional	abstraction	that	was	used	that
reduced	line	count	significantly,	which	is	the	use	of	iterators.	In	calculating	our
variable	summaries,	we	always	used	iterators	to	calculate	sums	and	statistics.
Some	of	the	operators	have	not	been	introduced,	so	let's	look	closer:	let	N	=
data.len();
let	sum:	f64	=	data.iter().sum();
let	avg	=	sum	/	(N	as	f64);
let	dev	=	(
data.clone().into_iter()
.map(|v|	(v	-	avg).powi(2))
.fold(0.0,	|a,	b|	a+b)
/	(N	as	f64)
).sqrt();

Here,	there	are	two	important	iterator	methods	being	used—map	and	fold.	map
accept	a	mapping	function	and	return	an	iterator	of	the	modified	values.	The	fold
method	holds	an	accumulator	value	(argument	1),	and,	for	each	element	in	the
iterator,	applies	the	accumulator	function	(argument	2),	returning	the
accumulated	value	as	a	result.	The	fold	function	consumes	the	iterator	when
called.

An	iterator	is	defined	by	a	trait	with	a	next	method,	which	may	return	the	next
item	in	the	sequence.	A	simple	infinite	list	could	be	defined	as	follows:	struct
Fibonacci
{
curr:	u32,
next:	u32,
}

impl	Iterator	for	Fibonacci
{
type	Item	=	u32;
fn	next(&mut	self)	->	Option<u32>
{
let	new_next	=	self.curr	+	self.next;
self.curr	=	self.next;
self.next	=	new_next;
Some(self.curr)	//infinite	list,	never	None
}
}

fn	fibonacci()	->	Fibonacci
{
Fibonacci	{	curr:	1,	next:	1	}
}

These	objects	define	an	iterator.	The	map	function	and	other	stream	modifiers
simply	wrap	the	input	stream	inside	of	another	iterator	that	applies	the	modifier.

Alternatively,	the	statistics	calculation	could	have	been	defined	with	for	loops.
The	result	would	look	like	the	following:	let	N	=	data.len();
let	mut	sum	=	0.0;
for	di	in	0..data.len()
{
sum	+=	data[di];
}
let	avg	=	sum	/	(N	as	f64);
let	mut	dev	=	0.0;
for	di	in	0..data.len()
{
dev	+=	(data[di]	-	avg).powi(2);
}
dev	=	(dev	/	(N	as	f64)).sqrt();

By	comparison,	we	can	see	that	the	functional	code	is	a	little	bit	shorter.	More
importantly,	the	functional	code	is	declarative.	When	code	only	describes

requirements,	we	call	that	code	declarative.	When	code	describes	machine
instructions	to	satisfy	requirements,	we	call	that	code	imperative.	The	primary
benefits	of	declarative	style	over	imperative	style	are	that	declarative	style	is
self-documenting	and	prevents	mistakes	by	making	them	more	obvious.

For	these	reasons,	when	searching	for	abstractions,	we	encourage	looking	at	for
loops.	In	most	cases,	for	loops	can	be	messy	or	otherwise	undesirable.	Iterators
and	combinators	may	be	a	good	solution	to	help	improve	code	quality.

Writing	tests
To	run	tests	from	the	command	line,	type	cargo	test.	We	will	be	doing	this	a	lot.

Unit	testing
Unit	testing	focuses	on	testing	internal	interfaces	and	components	of	a	program.
It	is	also	called	whitebox	testing.	To	first	create	unit	tests,	it	is	a	good	idea	to
look	at	all	of	the	top-level	types,	traits,	and	functions.	All	top-level	identifiers
make	for	good	test	cases.	Depending	on	the	structure	of	the	program,	it	may	also
be	a	good	idea	to	test	combinations	of	these	components	to	cover	expected	use
cases.

We	have	one	utility	function,	the	statistic	calculation,	which	would	be	a	good
candidate	to	write	a	unit	test	for.	However,	this	function	doesn't	return	any	result.
Instead,	it	immediately	prints	output	to	the	console.	To	test	this,	we	should	break
the	function	into	two	components—one	that	calculates	the	statistics,	and	a
second	function	that	prints	the	statistics.	This	would	look	as	follows:	fn
variable_summary<W:	Write>(stdout:	&mut	raw::RawTerminal<W>,	vname:
&str,	data:	Vec<f64>)
{
let	(avg,	dev)	=	variable_summary_stats(data);
variable_summary_print(stdout,	vname,	avg,	dev);
}

fn	variable_summary_stats(data:	Vec<f64>)	->	(f64,	f64)
{
//calculate	statistics
let	N	=	data.len();
let	sum:	f64	=	data.iter().sum();
let	avg	=	sum	/	(N	as	f64);
let	dev	=	(
data.clone().into_iter()
.map(|v|	(v	-	avg).powi(2))
.fold(0.0,	|a,	b|	a+b)
/	(N	as	f64)
).sqrt();
(avg,	dev)
}

fn	variable_summary_print<W:	Write>(stdout:	&mut	raw::RawTerminal<W>,
vname:	&str,	avg:	f64,	dev:	f64)
{
//print	formatted	output
write!(stdout,	"Average	of	{:25}{:.6}\r\n",	vname,	avg);
write!(stdout,	"Standard	deviation	of	{:14}{:.6}\r\n",	vname,	dev);
write!(stdout,	"\r\n");
}

Now	that	we	have	isolated	the	statistics	calculation	into	its	own	function,	we	can
write	unit	tests	for	it	much	more	easily.	First,	we	supply	some	test	data,	and	then
verify	each	result.	Also	note	that	unit	tests	have	access	to	private	functions	as
long	as	we	add	use	super::*;	to	the	test	declaration.	Here	are	some	unit	tests	for
our	statistics	calculation:	#[cfg(test)]
mod	tests	{
use	super::*;

#[test]
fn	variable_stats()	{
let	test_data	=	vec![
(vec![1.0,	2.0,	3.0,	4.0,	5.0],	3.0,	1.41),
(vec![1.0,	3.0,	5.0,	7.0,	9.0],	5.0,	2.83),
(vec![1.0,	9.0,	1.0,	9.0,	1.0],	4.2,	3.92),
(vec![1.0,	0.5,	0.7,	0.9,	0.6],	0.74,	0.19),
(vec![200.0,	3.0,	24.0,	92.0,	111.0],	86.0,	69.84),
];
for	(data,	avg,	dev)	in	test_data
{
let	(ravg,	rdev)	=	variable_summary_stats(data);
//it	is	not	safe	to	use	direct	==	operator	on	floats
//floats	can	be	*very*	close	and	not	equal
//so	instead	we	check	that	they	are	very	close	in	value
assert!((avg-ravg).abs()	<	0.1);
assert!((dev-rdev).abs()	<	0.1);
}
}

}

Now,	if	we	run	cargo	test,	the	unit	tests	will	run.	The	result	should	show	one	test
passing.

Integration	testing
Integration	testing	focuses	on	testing	external	interfaces	of	a	program.	It	is	also
called	blackbox	testing.	To	create	integration	tests,	focus	on	what	the	input	and
output	of	a	program	or	module	should	be.	Think	of	the	different	configurations
of	options,	data,	and	possible	internal	interactions	to	create	tests.	These	tests
should	then	provide	good	coverage	of	high-level	behavior	of	the	completed
program.

To	create	an	integration	test,	we	first	need	to	reconfigure	our	project	as	a	module
that	can	be	imported.	Integration	tests	do	not	have	access	to	symbols	other	than
what	they	can	reference	from	use	statements.	To	accomplish	this,	we	can	move
the	program	logic	into	a	src/lib.rs	file	and	use	a	simple	wrapper	for	src/main.rs	.
After	this	change,	the	lib.rs	file	should	contain	all	of	the	code	from	main.rs,	with
the	one	change	of	renaming	the	main	function	to	run_simulation	and	making	the
function	public.	The	main.rs	wrapper	should	then	look	as	follows:	extern	crate
elevator;

fn	main()
{
elevator::run_simulation();
}

Now,	in	order	to	create	an	integration	test:

1.	 Create	a	tests/	directory
2.	 Create	an	integration_tests.rs	file	inside	the	tests/	directory
3.	 Inside	the	integration_tests.rs	file,	create	functions	for	each	test	case

We	will	create	a	single	test	case	here	to	accept	a	specific	elevator	request	and
check	that	the	requests	are	processed	in	a	reasonable	amount	of	time.	The	test
harness	is	as	follows:	extern	crate	elevator;
extern	crate	timebomb;
use	timebomb::timeout_ms;

#[test]

fn	test_main()	{
timeout_ms(||	{
elevator::run_simulation();
},	300000);
}

As	input,	we	will	use	a	5	story	building,	5.67	meters	for	each	floor,	and	7	floor
requests.	The	file	will	be	stored	as	test1.txt	and	should	have	the	following
structure:	5
5.67
2
1
4
0
3
1
0

With	these	tests	in	place,	we	can	now	confirm	that	the	basic	logic	is	working	and
that	the	program	as	a	whole	function	properly.	To	run	all	tests,	call	cargo	test,	or
use	a	specific	test	case	with	cargo	test	casename.

A	sample	test	run	is	as	follows:	[]	Carriage	at	floor	1
[]	Location	2.203829
[]	Velocity	-2.157214
[]	Acceleration	1.000000
[X]	Voltage	[up-down]	1620000.000000

[]	Carriage	at	floor	3
[]	Location	11.344785
[X]	Velocity	0.173572
[]	Acceleration	-1.000000
[]	Voltage	[up-down]	1320000.000000

[]	Carriage	at	floor	4
[X]	Location	19.235710
[]	Velocity	2.669347
[]	Acceleration	-1.000000

[]	Voltage	[up-down]	1320000.000000

[]	Carriage	at	floor	1
[]	Location	0.133051
[]	Velocity	0.160799
[]	Acceleration	-1.000000
[X]	Voltage	[up-down]	1320000.000000

Once	the	simulation	completes,	the	summary	and	test	results	are	as	follows:
Average	of	location	5.017036
Standard	deviation	of	location	8.813507

Average	of	velocity	-0.007597
Standard	deviation	of	velocity	2.107692

Average	of	acceleration	0.000850
Standard	deviation	of	acceleration	0.995623

Average	of	voltage	1470109.838195
Standard	deviation	of	voltage	149352.287579

test	test_main	...	ok

test	result:	ok.	1	passed;	0	failed;	0	ignored;	0	measured;	0	filtered	out

running	1	test
test	tests::variable_stats	...	ok

test	result:	ok.	1	passed;	0	failed;	0	ignored;	0	measured;	0	filtered	out

Summary
In	this	chapter,	we	outlined	the	steps	taken	to	gather	project	requirements,
architect	a	solution,	and	then	implement	the	completed	deliverable.	We	focused
on	how	this	process	can	be	clarified	using	functional	thinking.

When	gathering	program	requirements,	the	required	data,	input,	and	output
should	be	clarified.	When	translating	requirements	into	a	code	plan,	creating	a
dependency	graph	as	an	intermediary	step	can	help	simplify	complex	designs.
When	testing,	functions	become	great	units	to	cover.	By	comparison,	lines	and
lines	of	imperative	code	are	almost	impossible	to	test.

We	will	continue	to	develop	this	software	project	throughout	the	book.	This	first
simulation	deliverable	will	accompany	the	project	proposal	and	will	hopefully
help	our	firm	be	selected	for	the	contract.	In	the	next	chapter,	you	will	receive
feedback	from	the	developers	and	meet	your	competitor.

Questions
1.	 What	is	the	ternary	operator?
2.	 What	is	another	name	for	unit	tests?
3.	 What	is	another	name	for	integration	tests?
4.	 What	is	declarative	programming?
5.	 What	is	imperative	programming?
6.	 What	is	defined	in	the	iterator	trait?
7.	 In	which	direction	will	fold	traverse	the	iterator	sequence?
8.	 What	is	a	dependency	graph?
9.	 What	are	the	two	constructors	of	Option?

	

	

Functional	Data	Structures
Data	structures	are	the	second	most	basic	building	blocks	of	programming,
following	control	flow.	After	early	languages	developed	control	flow	structures,
it	quickly	became	apparent	that	simple	variable	labels	were	insufficient	for
developing	complex	programs.	Data	structures	have	evolved	from	the	basic
concept	of	a	sized	datum	stored	at	an	address	to	the	concept	of	strings	and
arrays,	followed	by	mixed	structures,	and	finally	collections.

In	this	chapter,	we	will	revisit	the	project	introduced	in	Chapter	2,	Functional
Control	Flow.	The	project	requirements	have	expanded	to	accommodate
feedback	from	the	potential	client.	There	are	also	specific	performance	targets
that	must	be	met	due	to	competition	from	a	rival	developer.	To	help	our	business
succeed,	we	must	now	improve	the	previous	simulation	and	ensure	that	it	meets
customer	demand	and	performance	targets.

In	this	chapter,	we	will	cover	the	following:

Adjusting	to	changing	the	scope	of	the	project
Reformatting	code	to	support	multiple	use	cases
Using	appropriate	data	structures	to	gather,	store,	and	process	data
Organizing	code	into	traits	and	data	classes

	

	

Technical	requirements
A	recent	version	of	Rust	is	necessary	to	run	the	examples	provided:

https://www.rust-lang.org/en-US/install.html

This	chapter's	code	is	also	available	on	GitHub:

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Specific	installation	and	build	instructions	are	also	included	in	each	chapter's
README.md	file.

https://www.rust-lang.org/en-US/install.html
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Adjusting	to	changing	the	scope	of
the	project
You	can't	plan	for	everything.	You	also	probably	don't	want	to	try	to	plan	for
everything.	Flexible	software	development	and	emphasizing	robust,	logically
independent	components	will	reduce	work	when	a	requirement	or	dependency
inevitably	changes.

Gathering	new	project	requirements
After	an	initial	demonstration,	your	team	has	received	comments	and	feedback
from	the	potential	client.	Watching	the	simulation,	the	elevator	seems	to	often
pass	and	go	back	up	to	floors	before	stopping.	The	client	expressed	concern	that
this	would	be	not	only	inefficient,	but	also	uncomfortable	or	irritable	for
passengers.	To	win	the	contract,	the	client	wants	to	see	improvements	and
evidence	showing	that:

The	ride	is	comfortable	and	reliably	direct
The	ride	moves	efficiently	from	each	source	to	each	destination	floor

Additionally,	you	have	learned	that	a	competitor	has	submitted	a	separate
proposal.	The	competitor	specifically	claims	that	its	elevator	control	system
maintains	acceleration	within	comfortable	levels,	velocity	within	safe	bounds,
and	reaches	destinations	accurately	within	20%	of	physical	theoretical	limits.	No
specific	numbers	were	provided,	and	no	simulation	was	demonstrated,	but	the
client	seemed	very	convinced,	along	with	the	assurance	that	the	project	will	cost
10%	less.

	

	

	

Architecting	a	change	map	from
requirements
After	receiving	feedback	and	new	expectations,	we	must	convert	these	demands
into	a	plan	of	action.	The	simulation	needs	to	be	updated	and	additional	tools
will	need	to	be	built.	Let's	review	the	new	information	and	architect	a	solution	to
meet	the	new	requirements.

	

	

	

Translating	expectations	into
requirements
Reviewing	the	feedback,	it	is	clear	that	there	are	two	perspectives	that	need	to	be
addressed:

A	competitor	has	made	specific	claims	that	our	company	will	need	to
outperform
The	client	has	explicit	expectations	to	address	concerns	from	the	first
demonstration

The	specific	claims	from	the	competitor	can	be	listed	as	follows:

Acceleration	is	within	comfortable	bounds
Velocity	is	within	safe	bounds
Trip	time	from	any	floor	to	any	other	floor	is	within	20%	of	physical
theoretical	limits
The	software	is	10%	cheaper

We	will	delegate	the	price	negotiation	to	our	sales	team,	but	otherwise	we	need
to	adjust	our	software	to	outperform	the	other	three	claims.	If	we	can	meet	these
requirements	and	provide	adequate	supporting	evidence,	then	this	should	also
address	most	of	the	client's	explicit	concerns.

Additionally,	the	client	was	specifically	concerned	about	the	elevator	passing	the
destination	floor	and	needing	to	back	up.	We	should	address	this	behavior	and
confirm	that	it	does	not	occur	in	simulations.

It	is	clear	at	this	point	that	the	previous	motor	control	logic	is	inadequate.	After
brainstorming,	your	team	develops	two	possible	improvements:

Use	a	variable	acceleration/deceleration	calculation,	rather	than	on/off
adjustment
Reduce	the	update	interval	to	permit	faster	and,	thus,	more	precise
decisions

Translating	requirements	into	a
change	map
Given	the	various	new	requirements,	it	seems	appropriate	to	split	the	previous
simulation	code	into	different	libraries	and	executables.	We	will	create	a	separate
module	for	each	of	the	following:

A	physics	simulator
A	motor	control
An	executable	to	run	the	simulation	for	demonstration
An	executable	to	further	analyze	the	simulation

The	physics	simulator	should	accept	a	generic	motor	controller	and	a
measurement	accumulator.	The	measurement	accumulator	provided	will	accept
readings	of	velocity,	acceleration,	and	all	other	information	available	to	the
simulator.	The	motor	controller	provided	will	accept	similar	readings	of	velocity
and	so	on,	and	produce	an	output	of	the	desired	voltage	to	motors.	The	resulting
function	will	be	responsible	for	accurately	simulating	the	physical	operation	of
any	specified	elevator	and	building.

The	motor	control	will	couple	with	the	simulator,	or	eventually	the	actual
elevator,	to	use	available	information	to	decide	how	to	operate	the	elevator.

The	simulation	executable	will	wrap	the	physics	simulator	and	motor	control	to
create	a	program	equivalent	to	the	simulation	from	Chapter	2,	Functional	Control
Flow.	Additionally,	all	recorded	information	from	the	simulation	should	be
saved	to	a	file	for	further	detailed	analysis.

The	analysis	executable	should	accept	the	simulator	trace	file	and	check	that	all
performance	requirements	have	been	met.	Additionally,	any	analysis	that	would
be	useful	for	development	purposes	will	be	added	here.

Mapping	requirements	directly	to
code
It	is	not	always	desirable	to	go	through	the	full	process	of	creating	a	dependency
graph	and	pseudo	code	for	each	project	or	change.	Here,	we	will	transition
directly	from	the	preceding	plan	to	the	following	code	stubs.

Writing	the	physics	simulator
The	physics	simulator	in	src/physics.rs	is	responsible	for	modeling	the	physics
and	layout	of	the	building	and	elevator	operations.	The	simulator	will	be
provided	with	one	object	to	handle	motor	control	and	another	to	handle	data
collection.	The	physics	simulator	module	will	define	traits	for	each	of	those
interfaces,	and	the	motor	control	and	data	collection	objects	should	implement
each	trait,	respectively.

Let's	start	by	defining	some	of	the	type	declarations	for	the	physics	module.	First,
let's	look	at	a	key	interface—the	direct	motor	input.	Until	this	point,	we	have
assumed	that	motor	input	will	have	simple	voltage	control	that	we	can	represent
as	a	positive	or	negative	floating	point	integer.	This	definition	is	problematic,
mainly	in	the	sense	that	all	references	to	this	type	will	reference	f64.	This	type
specifies	a	very	specific	data	representation	with	no	room	for	adjustment.	If	we
litter	our	code	with	references	to	this	type,	then	any	changes	will	require	us	to	go
back	and	edit	every	one	of	the	references.

Instead,	for	the	motor	input	type,	let's	provide	a	name	for	the	type.	This	could	be
an	alias	for	the	f64	type,	which	would	solve	the	immediate	concern.	Though	this
is	acceptable,	we	will	choose	to	be	even	more	explicit	with	the	type	definition
and	provide	enum	cases	for	up	and	down.	The	enum	type,	also	known	as	a	tagged
union,	is	useful	to	define	data	that	may	have	multiple	structures	or	use	cases.
Here,	the	constructors	are	identical,	but	the	meaning	of	each	voltage	field	is
opposite.

Furthermore,	when	interacting	with	the	MotorInput	type,	we	should	avoid
assuming	any	internal	structure.	This	minimizes	our	exposure	to	future	interface
changes	that	may	change	because	MotorInput	defines	an	interface	with	a	currently
unknown	physical	component.	We	will	be	responsible	for	software	compatibility
with	that	interface.	So,	to	abstract	any	interaction	with	MotorInput,	we	will	use
traits	instead.	Traits	that	do	not	define	intrinsic	behavior	of	a	type,	but	rather
associated	behavior,	are	sometimes	called	data	classes.

Here	is	the	enum	and	a	data	class	defining	the	calculation	of	force	derived	from	an

input:	#[derive(Clone,Serialize,Deserialize,Debug)]
pub	enum	MotorInput
{
Up	{	voltage:	f64	},
Down	{	voltage:	f64	}
}

pub	trait	MotorForce	{
fn	calculate_force(&self)	->	f64;
}

impl	MotorForce	for	MotorInput	{
fn	calculate_force(&self)	->	f64
{
match	*self	{
MotorInput::Up	{	voltage:	v	}	=>	{	v	*	8.0	}
MotorInput::Down	{	voltage:	v	}	=>	{	v	*	-8.0	}
}
}
}

pub	trait	MotorVoltage	{
fn	voltage(&self)	->	f64;
}

impl	MotorVoltage	for	MotorInput	{
fn	voltage(&self)	->	f64
{
match	*self	{
MotorInput::Up	{	voltage:	v	}	=>	{	v	}
MotorInput::Down	{	voltage:	v	}	=>	{	-v	}
}
}
}

Next,	let's	define	the	elevator	information.	We	will	create	an	ElevatorSpecification,
which	describes	the	structure	of	the	building	and	elevator.	We	also	require	an

ElevatorState	to	hold	information	regarding	the	current	elevator	status.	To	clarify
usage	of	floor	requests,	we	will	also	create	an	alias	for	FloorRequests	vectors	to
make	the	meaning	explicit.	We	will	choose	to	use	a	struct	instead	of	tuples	here
to	create	explicit	field	names.	Otherwise,	structs	and	tuples	are	interchangeable
for	storing	miscellaneous	data.	The	definitions	are	as	follows:	#
[derive(Clone,Serialize,Deserialize,Debug)]
pub	struct	ElevatorSpecification
{
pub	floor_count:	u64,
pub	floor_height:	f64,
pub	carriage_weight:	f64
}

#[derive(Clone,Serialize,Deserialize,Debug)]
pub	struct	ElevatorState
{
pub	timestamp:	f64,
pub	location:	f64,
pub	velocity:	f64,
pub	acceleration:	f64,
pub	motor_input:	MotorInput
}

pub	type	FloorRequests	=	Vec<u64>;

The	traits	for	MotorController	and	DataRecorder	are	almost	identical.	The	only
difference	is	that	polling	a	MotorController	expects	a	MotorInput	to	be	returned.	Here,
we	choose	to	use	init	methods	instead	of	constructors	to	permit	additional
external	initialization	of	each	resource.	For	example,	it	may	be	necessary	for
DataRecorder	to	open	files	or	other	resources	to	be	accessed	during	simulation.
Here	are	the	trait	definitions:	pub	trait	MotorController
{
fn	init(&mut	self,	esp:	ElevatorSpecification,	est:	ElevatorState);
fn	poll(&mut	self,	est:	ElevatorState,	dst:	u64)	->	MotorInput;
}

pub	trait	DataRecorder

{
fn	init(&mut	self,	esp:	ElevatorSpecification,	est:	ElevatorState);
fn	poll(&mut	self,	est:	ElevatorState,	dst:	u64);
fn	summary(&mut	self);
}

To	simulate	the	physics	of	the	elevator,	we	will	reproduce	the	central	loop	of	the
simulation	from	Chapter	2,	Functional	Control	Flow.	Some	of	the	state	has	been
organized	into	structures	instead	of	loose	variables.	Motor	control	decisions	have
been	delegated	to	the	MotorController	object.	Output	and	data	recording	has	been
delegated	to	the	DataRecorder.	There	is	also	a	new	parameter	field	to	specify	the
elevator's	carriage	weight.	With	all	of	these	generalizations,	the	code	becomes	as
follows:	pub	fn	simulate_elevator<MC:	MotorController,	DR:	DataRecorder>
(esp:	ElevatorSpecification,	est:	ElevatorState,	req:	FloorRequests,
mc:	&mut	MC,	dr:	&mut	DR)	{

//immutable	input	becomes	mutable	local	state
let	mut	esp	=	esp.clone();
let	mut	est	=	est.clone();
let	mut	req	=	req.clone();

//initialize	MotorController	and	DataController
mc.init(esp.clone(),	est.clone());
dr.init(esp.clone(),	est.clone());

//5.	Loop	while	there	are	remaining	floor	requests
let	original_ts	=	Instant::now();
thread::sleep(time::Duration::from_millis(1));
while	req.len()	>	0
{
//5.1.	Update	location,	velocity,	and	acceleration
let	now	=	Instant::now();
let	ts	=	now.duration_since(original_ts)
.as_fractional_secs();
let	dt	=	ts	-	est.timestamp;
est.timestamp	=	ts;

est.location	=	est.location	+	est.velocity	*	dt;
est.velocity	=	est.velocity	+	est.acceleration	*	dt;
est.acceleration	=	{
let	F	=	est.motor_input.calculate_force();
let	m	=	esp.carriage_weight;
-9.8	+	F/m
};

After	declaring	the	state	and	calculating	time-dependent	variables,	we	add	the
elevator	control	logic:	//5.2.	If	next	floor	request	in	queue	is	satisfied,	
then	remove	from	queue
let	next_floor	=	req[0];
if	(est.location	-	(next_floor	as	f64)*esp.floor_height).abs()	
<	0.01	&&
est.velocity.abs()	<	0.01
{
est.velocity	=	0.0;
req.remove(0);
//remove	is	an	O(n)	operation
//Vec	should	not	be	used	like	this	for	large	data
}

//5.4.	Print	realtime	statistics
dr.poll(est.clone(),	next_floor);

//5.3.	Adjust	motor	control	to	process	next	floor	request
est.motor_input	=	mc.poll(est.clone(),	next_floor);

thread::sleep(time::Duration::from_millis(1));
}
}

Writing	the	motor	controller
The	motor	controllers	in	src/motor.rs	will	be	responsible	for	making	decisions
regarding	how	much	force	to	generate	from	the	motor.	The	physics	driver	will
supply	current	state	information	regarding	all	known	measurements	of	location,
velocity,	and	so	on.	Currently,	the	motor	controller	uses	only	the	most	current
information	to	make	control	decisions.	However,	this	may	change	in	the	future,
in	which	case	the	controller	may	store	past	measurements.

Extracting	the	same	control	algorithm	from	the	previous	chapter,	the	new
MotorController	definition	becomes	as	follows:

pub	struct	SimpleMotorController

{

			pub	esp:	ElevatorSpecification

}

impl	MotorController	for	SimpleMotorController

{

			fn	init(&mut	self,	esp:	ElevatorSpecification,	est:	ElevatorState)

			{

						self.esp	=	esp;

			}

			fn	poll(&mut	self,	est:	ElevatorState,	dst:	u64)	->	MotorInput

			{

						//5.3.	Adjust	motor	control	to	process	next	floor	request

						//it	will	take	t	seconds	to	decelerate	from	velocity	v	

								at	-1	m/s^2

						let	t	=	est.velocity.abs()	/	1.0;

						//during	which	time,	the	carriage	will	travel	d=t	*	v/2	meters

						//at	an	average	velocity	of	v/2	before	stopping

						let	d	=	t	*	(est.velocity/2.0);

						//l	=	distance	to	next	floor

						let	l	=	(est.location	-	(dst	as	

										f64)*self.esp.floor_height).abs();					

After	establishing	basic	constants	and	values,	we	need	to	determine	the	target
acceleration:

let	target_acceleration	=	{

									//are	we	going	up?

									let	going_up	=	est.location	<	(dst	as	

												f64)*self.esp.floor_height;

									//Do	not	exceed	maximum	velocity

									if	est.velocity.abs()	>=	5.0	{

												if	going_up==(est.velocity>0.0)	{

															0.0

												//decelerate	if	going	in	wrong	direction

												}	else	if	going_up	{

															1.0

												}	else	{

															-1.0

												}

									//if	within	comfortable	deceleration	range	and	moving	

													in	right	direction,	decelerate

									}	else	if	l	<	d	&&	going_up==(est.velocity>0.0)	{

												if	going_up	{

															-1.0

												}	else	{

															1.0

												}

									//else	if	not	at	peak	velocity,	accelerate

									}	else	{

												if	going_up	{

															1.0

												}	else	{

															-1.0

												}

									}

						};						

After	determining	the	target	acceleration,	it	should	be	converted	into	a	MotorInput
value:

let	gravity_adjusted_acceleration	=	target_acceleration	+	9.8;

						let	target_force	=	gravity_adjusted_acceleration	*	

													self.esp.carriage_weight;

						let	target_voltage	=	target_force	/	8.0;

						if	target_voltage	>	0.0	{

									MotorInput::Up	{	voltage:	target_voltage	}

						}	else	{

									MotorInput::Down	{	voltage:	target_voltage.abs()	}

						}

			}

}

Now,	let's	write	a	second	controller,	implementing	the	proposed	improvements.
We	will	compare	the	two	controllers	later	in	the	simulation.	The	first	suggestion
was	to	reduce	the	polling	interval.	This	change	must	be	made	in	the	physics
simulator,	so	we	will	measure	its	effect,	but	we	will	not	tie	it	to	the	motor
controller.	The	second	suggestion	was	to	smooth	the	acceleration	curve.

After	consideration,	we	realized	that	the	change	in	acceleration	(also	called	jerk)
is	what	made	people	uncomfortable,	more	so	than	small	acceleration	forces.
Understanding	this,	we	will	permit	faster	acceleration	so	long	as	the	jerk	remains
small.	We	will	replace	the	current	target	acceleration	calculation	with	the
following	constraints	and	objectives:

Maximum	jerk	=	0.2	m/s3
Maximum	acceleration	=	2.0	m/s2
Maximum	velocity	=	5.0	m/s
Target	change	in	acceleration:

0.2	if	accelerating	up
-0.2	if	accelerating	down
0.0	if	at	stable	velocity

The	resulting	controller	becomes	as	follows:

const	MAX_JERK:	f64	=	0.2;

const	MAX_ACCELERATION:	f64	=	2.0;

const	MAX_VELOCITY:	f64	=	5.0;

pub	struct	SmoothMotorController

{

			pub	esp:	ElevatorSpecification,

			pub	timestamp:	f64

}

impl	MotorController	for	SmoothMotorController

{

			fn	init(&mut	self,	esp:	ElevatorSpecification,	est:	ElevatorState)

			{

						self.esp	=	esp;

						self.timestamp	=	est.timestamp;

			}

			fn	poll(&mut	self,	est:	ElevatorState,	dst:	u64)	->	MotorInput

			{

						//5.3.	Adjust	motor	control	to	process	next	floor	request

						//it	will	take	t	seconds	to	reach	max	from	max

						let	t_accel	=	MAX_ACCELERATION	/	MAX_JERK;

						let	t_veloc	=	MAX_VELOCITY	/	MAX_ACCELERATION;

						//it	may	take	up	to	d	meters	to	decelerate	from	current

						let	decel_t	=	if	(est.velocity>0.0)	==	(est.acceleration>0.0)	{

									//this	case	deliberately	overestimates	d	to	prevent	"back	up"

									(est.acceleration.abs()	/	MAX_JERK)	+

									(est.velocity.abs()	/	(MAX_ACCELERATION	/	2.0))	+

									2.0	*	(MAX_ACCELERATION	/	MAX_JERK)

						}	else	{

									//without	the	MAX_JERK,	this	approaches	infinity	and	

												decelerates	way	too	soon

									//MAX_JERK	*	1s	=	acceleration	in	m/s^2

									est.velocity.abs()	/	(MAX_JERK	+	est.acceleration.abs())

						};

						let	d	=	est.velocity.abs()	*	decel_t;

						//l	=	distance	to	next	floor

						let	l	=	(est.location	-	(dst	as	

														f64)*self.esp.floor_height).abs();

After	determining	basic	constants	and	values,	we	can	calculate	a	target

acceleration:

let	target_acceleration	=	{

									//are	we	going	up?

									let	going_up	=	est.location	<	(dst	as	

													f64)*self.esp.floor_height;

									//time	elapsed	since	last	poll

									let	dt	=	est.timestamp	-	self.timestamp;

									self.timestamp	=	est.timestamp;

									//Do	not	exceed	maximum	acceleration

									if	est.acceleration.abs()	>=	MAX_ACCELERATION	{

												if	est.acceleration	>	0.0	{

															est.acceleration	-	(dt	*	MAX_JERK)

												}	else	{

															est.acceleration	+	(dt	*	MAX_JERK)

												}

									//Do	not	exceed	maximum	velocity

									}	else	if	est.velocity.abs()	>=	MAX_VELOCITY

												||	(est.velocity	+	est.acceleration	*	

															(est.acceleration.abs()	/	MAX_JERK)).abs()	>=	

																										MAX_VELOCITY	{

												if	est.velocity	>	0.0	{

															est.acceleration	-	(dt	*	MAX_JERK)

												}	else	{

															est.acceleration	+	(dt	*	MAX_JERK)

												}

									//if	within	comfortable	deceleration	range	and	

													moving	in	right	direction,	decelerate

									}	else	if	l	<	d	&&	(est.velocity>0.0)	==	going_up	{

												if	going_up	{

															est.acceleration	-	(dt	*	MAX_JERK)

												}	else	{

															est.acceleration	+	(dt	*	MAX_JERK)

												}

									//else	if	not	at	peak	velocity,	accelerate	smoothly

									}	else	{

												if	going_up	{

															est.acceleration	+	(dt	*	MAX_JERK)

												}	else	{

															est.acceleration	-	(dt	*	MAX_JERK)

												}

									}

						};

After	determining	a	target	acceleration,	we	should	calculate	a	target	force:

let	gravity_adjusted_acceleration	=	target_acceleration	+	9.8;

						let	target_force	=	gravity_adjusted_acceleration

												*	self.esp.carriage_weight;

						let	target_voltage	=	target_force	/	8.0;

						if	!target_voltage.is_finite()	{

									//divide	by	zero	etc.

									//may	happen	if	time	delta	underflows

									MotorInput::Up	{	voltage:	0.0	}

						}	else	if	target_voltage	>	0.0	{

									MotorInput::Up	{	voltage:	target_voltage	}

						}	else	{

									MotorInput::Down	{	voltage:	target_voltage.abs()	}

						}

			}

}

Writing	the	executable	to	run	a
simulation
The	executable	to	run	a	simulation,	contained	in	src/lib.rs,	consists	of	all	input
and	configuration	from	the	previous	chapter's	simulation.	Here	is	the	harness
used	to	configure	and	run	a	simulation:	pub	fn	run_simulation()
{

//1.	Store	location,	velocity,	and	acceleration	state
//2.	Store	motor	input	voltage
let	mut	est	=	ElevatorState	{
timestamp:	0.0,
location:	0.0,
velocity:	0.0,
acceleration:	0.0,
motor_input:	MotorInput::Up	{
//a	positive	force	is	required	to	counter	gravity	and
voltage:	9.8	*	(120000.0	/	8.0)
}
};

//3.	Store	input	building	description	and	floor	requests
let	mut	esp	=	ElevatorSpecification	{
floor_count:	0,
floor_height:	0.0,
carriage_weight:	120000.0
};
let	mut	floor_requests	=	Vec::new();

//4.	Parse	input	and	store	as	building	description
and	floor	requests
let	buffer	=	match	env::args().nth(1)	{
Some(ref	fp)	if	*fp	==	"-".to_string()	=>	{
let	mut	buffer	=	String::new();

io::stdin().read_to_string(&mut	buffer)
.expect("read_to_string	failed");
buffer
},
None	=>	{
let	fp	=	"test1.txt";
let	mut	buffer	=	String::new();
File::open(fp)
.expect("File::open	failed")
.read_to_string(&mut	buffer)
.expect("read_to_string	failed");
buffer
},
Some(fp)	=>	{
let	mut	buffer	=	String::new();
File::open(fp)
.expect("File::open	failed")
.read_to_string(&mut	buffer)
.expect("read_to_string	failed");
buffer
}
};
for	(li,l)	in	buffer.lines().enumerate()	{
if	li==0	{
esp.floor_count	=	l.parse::<u64>().unwrap();
}	else	if	li==1	{
esp.floor_height	=	l.parse::<f64>().unwrap();
}	else	{
floor_requests.push(l.parse::<u64>().unwrap());
}
}

After	establishing	the	simulation	state	and	reading	the	input	configuration,	we
run	the	simulation:	let	termsize	=	termion::terminal_size().ok();
let	mut	dr	=	SimpleDataRecorder	{
esp:	esp.clone(),
termwidth:	termsize.map(|(w,_)|	w-2).expect("termwidth")	

as	u64,
termheight:	termsize.map(|(_,h)|	h-2).expect("termheight")
as	u64,
stdout:	&mut	io::stdout().into_raw_mode().unwrap(),
log:	File::create("simulation.log").expect("log	file"),
record_location:	Vec::new(),
record_velocity:	Vec::new(),
record_acceleration:	Vec::new(),
record_voltage:	Vec::new()
};
/*
let	mut	mc	=	SimpleMotorController	{
esp:	esp.clone()
};
*/
let	mut	mc	=	SmoothMotorController	{
timestamp:	0.0,
esp:	esp.clone()
};

simulate_elevator(esp,	est,	floor_requests,	&mut	mc,	&mut	dr);
dr.summary();

}

The	DataRecorder	implementation,	also	in	src/lib.rs,	is	responsible	for	outputting
real-time	information	as	well	as	summary	information.	Additionally,	we	will
serialize	and	store	the	simulation	data	in	a	log	file.	Notice	the	use	of	the	lifetime
parameter	along	with	the	parameterized	trait:	struct	SimpleDataRecorder<'a,	W:
'a	+	Write>
{
esp:	ElevatorSpecification,
termwidth:	u64,
termheight:	u64,
stdout:	&'a	mut	raw::RawTerminal<W>,
log:	File,
record_location:	Vec<f64>,

record_velocity:	Vec<f64>,
record_acceleration:	Vec<f64>,
record_voltage:	Vec<f64>,
}
impl<'a,	W:	Write>	DataRecorder	for	SimpleDataRecorder<'a,	W>
{
fn	init(&mut	self,	esp:	ElevatorSpecification,	est:	ElevatorState)
{
self.esp	=	esp.clone();
self.log.write_all(serde_json::to_string(&esp).unwrap().as_bytes()).expect("write
spec	to	log");
self.log.write_all(b"\r\n").expect("write	spec	to	log");
}
fn	poll(&mut	self,	est:	ElevatorState,	dst:	u64)
{
let	datum	=	(est.clone(),	dst);
self.log.write_all(serde_json::to_string(&datum).unwrap().as_bytes()).expect("write
state	to	log");
self.log.write_all(b"\r\n").expect("write	state	to	log");

self.record_location.push(est.location);
self.record_velocity.push(est.velocity);
self.record_acceleration.push(est.acceleration);
self.record_voltage.push(est.motor_input.voltage());

The	DataRecorder	is	responsible	for	not	only	recording	simulation	data	to	logs,	but
also	for	printing	statistics	to	the	Terminal:	//5.4.	Print	realtime	statistics
print!("{}{}{}",	clear::All,	cursor::Goto(1,	1),	cursor::Hide);
let	carriage_floor	=	(est.location	/	self.esp.floor_height).floor();
let	carriage_floor	=	if	carriage_floor	<	1.0	{	0	}	else	{	carriage_floor	as	u64	};
let	carriage_floor	=	cmp::min(carriage_floor,	self.esp.floor_count-1);
let	mut	terminal_buffer	=	vec!['	'	as	u8;	(self.termwidth*self.termheight)	as
usize];
for	ty	in	0..self.esp.floor_count
{
terminal_buffer[(ty*self.termwidth	+	0)	as	usize]	=	'['	as	u8;
terminal_buffer[(ty*self.termwidth	+	1)	as	usize]	=

if	(ty	as	u64)==((self.esp.floor_count-1)-carriage_floor)	{	'X'	as	u8	}
else	{	'	'	as	u8	};
terminal_buffer[(ty*self.termwidth	+	2)	as	usize]	=	']'	as	u8;
terminal_buffer[(ty*self.termwidth	+	self.termwidth-2)	as	usize]	=	'\r'	as	u8;
terminal_buffer[(ty*self.termwidth	+	self.termwidth-1)	as	usize]	=	'\n'	as	u8;
}
let	stats	=	vec![
format!("Carriage	at	floor	{}",	carriage_floor+1),
format!("Location	{:.06}",	est.location),
format!("Velocity	{:.06}",	est.velocity),
format!("Acceleration	{:.06}",	est.acceleration),
format!("Voltage	[up-down]	{:.06}",	est.motor_input.voltage()),
];
for	sy	in	0..stats.len()
{
for	(sx,sc)	in	stats[sy].chars().enumerate()
{
terminal_buffer[sy*(self.termwidth	as	usize)	+	6	+	sx]	=	sc	as	u8;
}
}
write!(self.stdout,	"{}",

String::from_utf8(terminal_buffer).ok().unwrap());

						self.stdout.flush().unwrap();

			}

The	DataRecorder	is	also	responsible	for	printing	a	summary	at	the	end	of	the
simulation:	fn	summary(&mut	self)
{
//6	Calculate	and	print	summary	statistics
write!(self.stdout,	"{}{}{}",	clear::All,	cursor::Goto(1,	1),
cursor::Show).unwrap();
variable_summary(&mut	self.stdout,	"location".to_string(),
&self.record_location);
variable_summary(&mut	self.stdout,	"velocity".to_string(),
&self.record_velocity);
variable_summary(&mut	self.stdout,	"acceleration".to_string(),
&self.record_acceleration);
variable_summary(&mut	self.stdout,	"voltage".to_string(),

&self.record_voltage);
self.stdout.flush().unwrap();
}
}

Writing	the	executable	to	analyze	a
simulation
The	analysis	executable	in	src/analyze.rs	should	look	at	the	log	file	and	confirm
that	all	requirements	are	satisfied—namely	the	following:

Jerk	is	under	0.2	m/s3
Acceleration	is	under	2.0	m/s2
Velocity	is	under	5.0	m/s
The	elevator	does	not	back	up	during	trips
All	trips	are	completed	within	20%	of	the	physical	theoretical	limit

The	program	design	here	will	be	to	pass	through	the	log	file	and	check	that	all
values	are	within	the	specified	limits.	There	also	needs	to	be	a	directional	flag	to
alert	us	to	backup	events.	When	a	trip	completes,	we	will	then	compare	the
elapsed	time	to	the	theoretical	limit.	If	any	requirement	is	not	satisfied,	we	will
fail	immediately	and	print	some	basic	information.	The	code	is	as	follows:

#[derive(Clone)]

struct	Trip	{

			dst:	u64,

			up:	f64,

			down:	f64

}

const	MAX_JERK:	f64	=	0.2;

const	MAX_ACCELERATION:	f64	=	2.0;

const	MAX_VELOCITY:	f64	=	5.0;

fn	main()

{

			let	simlog	=	File::open("simulation.log").expect("read	simulation	log");

			let	mut	simlog	=	BufReader::new(&simlog);

			let	mut	jerk	=	0.0;

			let	mut	prev_est:	Option<ElevatorState>	=	None;

			let	mut	dst_timing:	Vec<Trip>	=	Vec::new();

			let	mut	start_location	=	0.0;

After	initializing	the	analysis	state,	we	will	go	through	the	lines	in	the	log	to
calculate	the	statistics:

let	mut	first_line	=	String::new();

			let	len	=	simlog.read_line(&mut	first_line).unwrap();

			let	esp:	ElevatorSpecification	=	serde_json::from_str(&first_line).unwrap();

			for	line	in	simlog.lines()	{

						let	l	=	line.unwrap();

						let	(est,	dst):	(ElevatorState,u64)	=	serde_json::from_str(&l).unwrap();

						let	dl	=	dst_timing.len();

						if	dst_timing.len()==0	||	dst_timing[dl-1].dst	!=	dst	{

									dst_timing.push(Trip	{	dst:dst,	up:0.0,	down:0.0	});

						}

						if	let	Some(prev_est)	=	prev_est	{

									let	dt	=	est.timestamp	-	prev_est.timestamp;

									if	est.velocity	>	0.0	{

												dst_timing[dl-1].up	+=	dt;

									}	else	{

												dst_timing[dl-1].down	+=	dt;

									}

									let	da	=	(est.acceleration	-	prev_est.acceleration).abs();

									jerk	=	(jerk	*	(1.0	-	dt))	+	(da	*	dt);

									if	jerk.abs()	>	0.22	{

												panic!("jerk	is	outside	of	acceptable	limits:	{}	{:?}",	jerk,	est)

									}

						}	else	{

									start_location	=	est.location;

						}

						if	est.acceleration.abs()	>	2.2	{

									panic!("acceleration	is	outside	of	acceptable	limits:	{:?}",	est)

						}

						if	est.velocity.abs()	>	5.5	{

									panic!("velocity	is	outside	of	acceptable	limits:	{:?}",	est)

						}

						prev_est	=	Some(est);

			}

The	analysis	validates	some	requirements	as	it	is	processing	the	file;	other
requirements	must	be	validated	only	after	the	entire	log	has	been	processed:

//elevator	should	not	backup

			let	mut	total_time	=	0.0;

			let	mut	total_direct	=	0.0;

			for	trip	in	dst_timing.clone()

			{

						total_time	+=	(trip.up	+	trip.down);

						if	trip.up	>	trip.down	{

									total_direct	+=	trip.up;

						}	else	{

									total_direct	+=	trip.down;

						}

			}

			if	(total_direct	/	total_time)	<	0.9	{

						panic!("elevator	back	up	is	too	common:	{}",	total_direct	/	total_time)

			}

			//trips	should	finish	within	20%	of	theoretical	limit

			let	mut	trip_start_location	=	start_location;

			let	mut	theoretical_time	=	0.0;

			let	floor_height	=	esp.floor_height;

			for	trip	in	dst_timing.clone()

			{

						let	next_floor	=	(trip.dst	as	f64)	*	floor_height;

						let	d	=	(trip_start_location	-	next_floor).abs();

						theoretical_time	+=	(

									2.0*(MAX_ACCELERATION	/	MAX_JERK)	+

									2.0*(MAX_JERK	/	MAX_ACCELERATION)	+

									d	/	MAX_VELOCITY

);

						trip_start_location	=	next_floor;

			}

			if	total_time	>	(theoretical_time	*	1.2)	{

						panic!("elevator	moves	to	slow	{}	{}",	total_time,	theoretical_time	*	1.2)

			}

			println!("All	simulation	checks	passing.");

}

Running	simulations	and	analyzing
data
After	running	a	simulation	with	SimpleMotorController,	we	gather	an	initial
simulation	log.	A	simulation	log	will	be	saved	in	JSON	form	thanks	to	the	handy
SerDe	library.	There	should	be	an	initial	elevator	specification,	followed	by	an
elevator	state,	for	each	iteration	of	the	simulator.	The	simulation.log	will	end	up
looking	something	like	the	following:
{"floor_count":5,"floor_height":5.67,"carriage_weight":120000.0}
[{"timestamp":0.001288587,"location":0.0,"velocity":0.0,"acceleration":0.0,"motor_input":
{"Up":{"voltage":147000.0}}},2]
[{"timestamp":0.002877568,"location":0.0,"velocity":0.0,"acceleration":0.0002577174000002458,"motor_input":
{"Up":{"voltage":147003.86576100003}}},2]
[{"timestamp":0.004389254,"location":0.0,"velocity":3.8958778553677168e-
7,"acceleration":0.000575513599999411,"motor_input":{"Up":
{"voltage":147008.632704}}},2]
[{"timestamp":0.005886777,"location":5.834166693603828e-
10,"velocity":0.0000012514326383486894,"acceleration":0.0008778508000002461,"motor_input":
{"Up":{"voltage":147013.16776200004}}},2]
[{"timestamp":0.007377939,"location":2.449505465225691e-
9,"velocity":0.0000025604503929786564,"acceleration":0.0011773553999994136,"motor_input":
{"Up":{"voltage":147017.660331}}},2]
[{"timestamp":0.008929299,"location":6.421685786877059e-
9,"velocity":0.000004386952466321746,"acceleration":0.0014755878000016765,"motor_input":
{"Up":{"voltage":147022.13381700003}}},2]

This	serialized	output	was	created	by	our	SerDe	serialization	library.	There	are
several	steps	for	implementing	serialization	using	SerDe	and	it	is	very
informative	of	how	complex	libraries	work.	To	use	SerDe	for	JSON	serialization
and	deserialization,	we	must	do	the	following:

1.	 Add	SerDe	to	dependencies	in	Cargo.toml	as	follows:

[dependencies]

serde	=	"1.0"

serde_json	=	"1.0"

serde_derive	=	"1.0"

2.	 Add	macro_use	directives	and	extern	crate	imports	to	the	project	root:

#[macro_use]	extern	crate	serde_derive;

extern	crate	serde;

extern	crate	serde_json;

3.	 Derive	Serialize	and	Deserialize	traits	for	data	that	will	be	serialized.	To
derive	traits	with	macro	manipulations	on	declarations,	the	derive	directive
is	used.	For	each	macro	in	the	directive,	a	corresponding	procedural	macro
is	expected.	Consider	the	following	code:

#[derive(Clone,Serialize,Deserialize,Debug)]

pub	enum	MotorInput

{

			Up	{	voltage:	f64	},

			Down	{	voltage:	f64	}

}

#[derive(Clone,Serialize,Deserialize,Debug)]

pub	struct	ElevatorSpecification

{

			pub	floor_count:	u64,

			pub	floor_height:	f64,

			pub	carriage_weight:	f64

}

#[derive(Clone,Serialize,Deserialize,Debug)]

pub	struct	ElevatorState

{

			pub	timestamp:	f64,

			pub	location:	f64,

			pub	velocity:	f64,

			pub	acceleration:	f64,

			pub	motor_input:	MotorInput

}

4.	 Serialize	data	as	needed.	In	lib.rs,	we	serialize	ElevatorSpecification	and
ElevatorState	structs.	Type	hints	are	often	necessary,	as	the	type	system
doesn't	like	guessing:

serde_json::to_string(&datum).unwrap().as_bytes()

5.	 Deserialize	data	as	needed.	In	analyze.rs,	we	deserialize	lines	into
ElevatorSpecification	and	ElevatorState	structs.	Type	hints	are	often	necessary,
as	the	type	system	doesn't	like	guessing:

serde_json::from_str(&l).unwrap()

SerDe	supports	many	built-in	types	to	serialize	and	deserialize.	These	roughly

correspond	to	all	types	that	JSON	permits,	with	additional	structs	permitted
through	type	hints.

Looking	through	simulation.log,	we	can	find	most	of	the	built-in	types:

Integer	types:	Integer	types	become	direct	JSON	integers:

5

Floating	point	types:	Floating	point	integers	become	direct	JSON	floats:

6.54321

Strings:	Rust	strings	are	also	translated	directly	into	JSON	equivalents:

"timestamp"

Vectors	and	arrays:	Rust	collections	are	sometimes	serialized	in
unexpected	ways.	For	the	most	part,	vector	types	are	translated	directly	into
JSON	arrays;	containing	the	serialized	version	of	whatever	the	vector
contains:

[1,2,3,4,5,6,0]

Tuples:	Tuples	are	serialized	into	JSON	arrays,	however,	the	compiler
typically	requires	a	type	hint	to	understand	how	to	serialize/deserialize
these	types:

[{"timestamp":0.007377939,"location":2.449505465225691e-9,"velocity":0.0000025604503929786564,"acceleration":0.0011773553999994136,"motor_input":{"Up":{"voltage":147017.660331}}},2]

Structs:	Rust	structs	are	translated	directly	into	JSON	objects.	This	always
succeeds	because	Rust	field	names	are	valid	object	keys,	as	follows:

{"floor_count":5,"floor_height":5.67,"carriage_weight":120000.0}

Tagged	unions:	Tagged	unions	are	a	slightly	strange	case.	The	union
constructor	is	converted	into	a	JSON	object	like	any	other	struct.	The	union
tag,	however,	is	also	given	its	own	struct,	wrapping	the	union	constructor	in
a	separate	object.	Type	hints	are	very	much	necessary	for	the	compiler	to
serialize/deserialize	correctly	here:

{"Up":{"voltage":147003.86576100003}}

HashMap:	Rust	HashMaps	are	an	odd	case	for	serialization.	The	library
attempts	to	convert	them	to	JSON	objects.	However,	not	all	HashMap	keys
can	be	serialized.	Therefore,	some	serialization	may	fail	and	require	custom
serializers:

{"a":5,"b":6,"c":7}

Some	types	are	difficult	to	serialize,	including	time	structures	such	as	Instant.
Despite	this	difficulty	in	processing	certain	datatypes,	the	SerDe	library	is	very
stable,	fast,	and	indispensable	when	storing	and	loading	data.

Running	the	analysis	program,	we	can	confirm	that	this	motor	controller	is
insufficient	for	meeting	current	project	requirements:	jerk	is	outside	of
acceptable	limits:	ElevatorState	{
timestamp:	0.023739637,
location:	0,
velocity:	0,
acceleration:	1,
motor_input:	Up	{	voltage:	162000	}
}

Switching	to	SmoothMotorController,	we	can	see	that	all	specifications	are	met:	All
simulation	checks	passing.

	

	

Summary
In	this	chapter,	we	outlined	the	steps	to	address	changes	to	the	project	scope	and
new	specifications.	We	focused	on	how	to	write	robust	code	that	will	encourage
reuse	in	further	additional	projects	or	refinements.

Using	a	wide	variety	of	data	structures	helps	to	organize	our	project	and	data.
The	code	should	be	self-documenting	whenever	possible.	Additionally,	typesafe
code	can	enforce	some	assumptions	about	code	to	block	incorrect	input	and
inappropriate	usage.	Through	the	use	of	data	classes,	we	also	learned	how	to
extend	existing	data	structures	to	support	new	uses.	We	also	used	data	classes	as
an	interface	to	defer	assumptions	about	project	elements	that	were	uncertain.

In	the	next	chapter,	we	will	learn	about	parameterization	and	generics.	We	will
perform	an	in-depth	code	review	along	with	case	analysis.

Questions
1.	 What	is	a	good	library	to	serialize	and	deserialize	data?
2.	 What	do	the	hashtag	derive	lines	in	front	of	the	struct	declarations	in

physics.rs	do?
3.	 Which	comes	first	in	parameterized	declarations—lifetimes	or	traits?
4.	 In	a	trait	implementation,	what	is	the	difference	between	parameters	on	the

impl,	trait,	or	type?
5.	 What	is	the	difference	between	a	trait	and	a	data	class?
6.	 How	should	you	declare	that	a	package	has	multiple	binaries?
7.	 How	do	you	declare	a	structure	field	as	private?

	

	

Generics	and	Polymorphism
Parameterization,	also	known	as	generics	or	polymorphism,	is	the	third	most
significant	language	feature	following	control	flow	and	data	structures.
Parameterization	addresses	the	copy-and-paste	problem	of	early	languages.	This
feature	permits	the	don't	repeat	yourself	principle	of	good	program	design.

In	this	chapter,	we	will	look	at	how	parameterization	can	help	us	design	robust
programs	that	evolve	with	change	rather	than	fight	against	change.	No	new
project	requirements	will	be	introduced.	This	chapter	will	be	entirely	reflective,
looking	at	how	the	project	is	currently	structured,	how	can	it	be	improved,	and
how	parameterization	can	specifically	help.

The	following	are	the	learning	outcomes	of	this	chapter:

Understanding	generalized	algebraic	datatypes
Understanding	parametric	polymorphism
Understanding	parametric	lifetimes
Understanding	parametric	traits
Understanding	ambiguous	method	resolution

	

	

Technical	requirements
A	recent	version	of	Rust	is	necessary	to	run	the	examples	provided:

https://www.rust-lang.org/en-US/install.html

This	chapter's	code	is	also	available	on	GitHub:

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Specific	installation	and	build	instructions	are	also	included	in	each	chapter's
README.md	file.

https://www.rust-lang.org/en-US/install.html
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Staying	productive	during	downtime
There	will	be	some	time	before	the	client	makes	a	final	decision	regarding
negotiation	and	potential	acceptance	of	your	project	proposal.	During	that	time,
your	management	has	encouraged	you	to	take	this	time	to	review	your	work	and
make	preparations	for	integrating	the	elevator	controller	into	a	real	elevator.

You	do	not	know	much	about	direct	elevator	control	interfaces,	and	the	client
specifically	mentioned	that	there	may	be	multiple	subcontractors	designing	each
of	the	different	elevators.	Making	assumptions	at	this	point	may	lead	to	wasted
effort	so,	instead,	you	decide	to	reconsider	your	code	and	look	for	opportunities
to	remove	any	assumptions.

Parameterization	and	use	of	trait	interfaces	should	help	achieve	this	goal	of
abstraction.	During	this	downtime,	you	decide	to	have	the	team	learn	about
parameterization	and	consider	how	it	can	be	applied	to	improve	this	project	or
later	projects.

Learning	about	generics
Generics	are	a	facility	to	write	code	for	multiple	contexts	with	different	types,
and	parameterization	allows	the	programmer	to	write	code	that	makes	fewer
assumptions	about	the	data	structures	and	code	segments	involved	in	the	code's
definition.	For	example,	a	very	ambiguous	concept	would	be	the	concept	of
addition.	When	a	programmer	writes	a	+	b,	what	does	that	mean?	In	Rust,	the	Add
trait	can	be	implemented	for	just	about	any	type.	As	long	as	there	is	an
implementation	for	the	Add	trait	in	scope	that	is	compatible	with	the	types	of	a	and
b,	then	this	trait	will	define	the	operation.	In	this	pattern,	we	can	write	generic
code	that	defines	a	concept	in	its	most	abstract	terms,	allowing	for	later
definitions	of	data	and	methods	to	interface	with	that	code	without	change.

A	major	example	of	completely	generic	code	are	built-in	container	data
structures.	Vectors	and	HashMaps	must	necessarily	know	the	types	of	the	objects
they	store.	However,	it	would	be	very	limiting	if	any	assumptions	were	made
about	the	underlying	data	structure	or	methods	for	the	stored	items.	Therefore,
parameterization	of	containers	allows	the	container	and	its	methods	to	explicitly
declare	trait	bounds	that	are	expected	from	stored	types.	All	other	characteristics
of	the	stored	item	will	be	parameterized.

	

	

	

Investigating	generics
Generics	refers	to	the	practice	of	parameterizing	classes	in	object-oriented
programming	languages.	Rust	does	not	have	an	exact	equivalent	of	classes.
However,	the	concept	of	datatypes	paired	with	a	trait	is	very	similar	to	a	class	if
used	in	that	sense.	So,	in	Rust,	generics	would	refer	to	the	parameterization	of
datatypes	and	traits.

Choosing	a	common	example	from	OOP,	let's	look	at	the	animal	kingdom.	In	the
following	code,	we	will	define	some	animals	and	actions	that	they	can	take.
First,	let's	define	two	animals:	struct	Cat
{
weight:	f64,
speed:	f64
}

struct	Dog
{
weight:	f64,
speed:	f64
}

Now,	let's	define	an	animal	trait	and	its	implementations.	All	animals	will	have
the	max_speed	method.	Here	is	the	code:	trait	Animal
{
fn	max_speed(&self)	->	f64;
}

impl	Animal	for	Cat
{
fn	max_speed(&self)	->	f64
{
self.speed
}
}

impl	Animal	for	Dog
{
fn	max_speed(&self)	->	f64
{
self.speed
}
}

Here,	we	have	defined	the	Rust	equivalent	of	interfaces	from	OOP.	However,	we
have	not	parameterized	anything,	so	nothing	here	should	be	considered	generic.
We	will	add	the	following	code,	a	trait	defining	the	concept	of	an	animal	chasing
a	toy.	First,	we	will	define	the	concept	of	a	toy.	This	will	follow	the	same	OOP-
like	pattern	as	in	the	preceding	code:	struct	SqueakyToy
{
weight:	f64
}

struct	Stick
{
weight:	f64
}

trait	Toy
{
fn	weight(&self)	->	f64;
}

impl	Toy	for	SqueakyToy
{
fn	weight(&self)	->	f64
{
self.weight
}
}

impl	Toy	for	Stick

{
fn	weight(&self)	->	f64
{
self.weight
}
}

Now,	we	have	two	traits,	each	having	two	possible	implementations.	Let's	define
an	action	for	an	animal	chasing	a	toy.	More	than	one	possible	animal	has	been
defined,	and	more	than	one	possible	toy,	so	we	will	need	to	use	a	generic
definition.	The	struct	definition	also	constrains	each	parameter	with	a	trait
bound,	which	adds	additional	information	to	the	struct;	now,	we	can	guarantee
that	each	animal	will	implement	the	Animal	trait	and	similarly,	each	toy	will
implement	Toy.	We	will	also	define	some	associated	logic	that	uses	the
parameterized	traits'	methods.	The	code	is	as	follows:	struct
AnimalChasingToy<A:	Animal,	T:	Toy>
{
animal:	A,
toy:	T
}

trait	AnimalChasesToy<A:	Animal,	T:	Toy>
{
fn	chase(&self);
}

impl<A:	Animal,	T:	Toy>	AnimalChasesToy<A,	T>	for	AnimalChasingToy<A,
T>
{
fn	chase(&self)
{
println!("chase")
}
}

At	this	point,	we	have	defined	a	generic	struct	and	trait	that	accepts	types,
knowing	only	some	limited	information	regarding	the	traits	of	each	object.

Multiple	traits,	or	none,	can	be	specified	to	declare	all	expected	interfaces.
Multiple	traits	or	lifetime	bounds	can	be	declared	with	the	'l	+	Trait1	+	Trait2
syntax.

Investigating	parametric
polymorphism
Another	common	application	of	parameterization	are	for	functions.	For	the	same
reasons	that	we	would	want	to	parameterize	data	structures	or	traits,	we	also
should	consider	parameterization	of	functions.	Parameterizing	functions	is	called
parametric	polymorphism.	Polymorphism	is	Greek	for	multiple	forms	or,
sometimes	in	modern	usage,	it	can	mean	multiple	arrows.	The	word	indicates
that	one	function	has	multiple	implementations	or	multiple	ground	type
signatures.

For	a	simple	example	of	a	parametric	function,	we	can	imagine	a	generic
multiply	by	three	function.	Here	is	the	implementation:	fn	raise_by_three<T:
Mul	+	Copy>(x:	T)	->	T
where	T:	std::ops::Mul<Output=T>
{
x	*	x	*	x
}

Here,	the	raise_by_three	function	does	not	know	what	Mul	does.	Mul	is	a	trait	and
abstract	behavior,	which	also	specifies	an	associated	type,	Output.	It	is	not
possible	to	generically	raise	x.pow(3)	here	because	x	may	not	be	a	numerical	type.
At	the	very	least,	we	do	not	know	whether	x	is	a	floating	type	or	an	integral	type.
So	instead,	we	use	the	available	Mul	trait	to	multiply	x	three	times.	This	may	seem
like	a	strange	thing	to	do,	but	the	concept	becomes	clearer	in	context.

First,	consider	the	application	in	regard	to	floating	and	integral	types.	This	usage
is	straightforward	but	does	not	seem	very	useful	yet.	We	already	have	a	working
raise	by	three	expression,	as	long	as	we	know	and	have	the	original	floating	or
integral	type.	So,	why	wouldn't	we	just	use	the	built-in	expression?	First,	let's
just	compare	the	two	options	in	code:	raise_by_three(10);
(10	as	u64).pow(3);

raise_by_three(3.0);

(3.0	as	f64).powi(3);

The	second	option	seems	much	more	preferable,	and	it	is.	However,	the	second
option	also	assumes	we	know	the	full	type	of	u64	or	f64	for	each	argument.	Let's
look	at	what	happens	if	we	erase	some	type	information:	#[derive(Copy,Clone)]
struct	Raiseable<T:	Mul	+	Copy>
{
x:	T
}

impl<T:	Mul	+	Copy>	std::ops::Mul	for	Raiseable<T>
where	T:	std::ops::Mul<Output=T>
{
type	Output	=	Raiseable<T>;
fn	mul(self,	rhs:	Self)	->	Self::Output
{
Raiseable	{	x:	self.x	*	rhs.x	}
}
}

let	x	=	Raiseable	{	x:	10	as	u64	};
raise_by_three(x);
//no	method	named	pow
//x.pow(3);

let	x	=	Raiseable	{	x:	3.0	as	f64	};

raise_by_three(x);

//no	method	named	powi

//x.powi(3);	

After	we	lose	access	to	the	underlying	types,	we	are	quickly	restricted	in	regard
to	what	operations	we	can	perform.	Generic	programming	is	great	in	the	respect
that	it	can	reduce	work	in	the	long	term;	however,	it	also	requires	very	explicit
declaration	and	implementation	of	all	interfaces	that	are	used.	Here,	you	can	see
that	we	must	declare	Copy	as	a	trait	bound,	meaning	the	ability	to	copy	a	variable
from	one	memory	location	to	another.	Another	low-level	trait	is	Sized,	which
indicates	that	a	datum	has	a	known	constant	size	at	compile	time.

If	we	look	at	the	HashMap	declaration,	we	can	see	why	this	abstraction	is	often

necessary:	impl<K:	Hash	+	Eq,	V>	HashMap<K,	V,	RandomState>

Each	hash	key	must	implement	Hash	and	Eq,	meaning	it	must	be	hashable	and
comparable.	Other	than	that,	no	traits	are	expected	and	thus	the	whole	data
structure	remains	very	generic.

Just	as	functions	can	be	parameterized,	functions	as	arguments	can	also	be
parameterized.	There	are	two	general	forms	of	functions	as	parameters—
closures	and	function	pointers.	Function	pointers	are	not	permitted	to	carry	state.
Closures	can	carry	state	but	have	a	variable	size	which	is	independent	of	their
declared	type.	Function	pointers	can	be	promoted	to	closures	automatically:	fn
foo<X>(x:	X)	->	X
{
x
}

fn	bar<X>(f:	fn(X)	->	X,	x:	X)	->	X
{
f(x)
}

foo(1);
bar(foo,1);

Closures	can	also	be	parameterized	in	a	similar	fashion.	This	case	is	a	bit	more
common.	If	you	are	wondering	whether	to	use	a	function	pointer	or	a	closure,
use	the	closure.	Function	pointers	can	always	be	promoted	to	closures.	Also,	this
code	introduces	the	where	syntax;	where	clauses	permit	trait	bounds	to	be	declared
in	a	more	readable	form.	Here	is	the	code:	fn	baz<X,F>(f:	F,	x:	X)	->	X
where	F:	Fn(X)	->	X
{
f(x)
}

baz(|x|	x,	1);
baz(foo,	1);

Here,	we	can	see	how	easy	it	is	to	wrap	a	function	pointer	into	a	closure.

Closures	are	a	good	abstraction	and	very	powerful	when	used	correctly.

Investigating	generalized	algebraic
datatypes
Sometimes,	it	is	desirable	to	have	the	type	system	carry	more	information	than
normal.	If	we	look	at	the	process	of	compilation,	types	occupy	a	space	between
the	program	code	and	the	program	executable.	The	code	can	take	the	form	of
text	files	before	compilation	or	an	abstract	syntax	tree	such	as	those	manipulated
by	Rust	macros.	Program	executables	consist	of	the	resulting	combination	of	all
Rust	primitives	like	expressions,	functions,	datatypes,	traits,	and	so	on.

Right	in	the	middle,	it	is	possible	to	introduce	a	new	concept	called	algebraic
data	types	(ADTs).	ADTs	are	technically	an	extension	of	Rust	primitives,
though	it	is	important	to	note	how	much	extra	type	information	is	used	for
ADTs.	This	technique	involves	preserving	extra	type	information	into	the
executable.	Extra	run	time	decision-making	is	a	step	towards	dynamic	typing
and	foregoes	optimizations	available	to	static	compilation.	The	result	is	a
somewhat	less	efficient	programming	primitive,	but	also	a	primitive	that	can
describe	concepts	that	are	otherwise	difficult	to	approach.

Let's	look	at	one	example—deferred	computation.	When	we	describe	a	relation
of	different	values	and	expressions,	we	normally	just	write	this	code	into	the
program	directly.	However,	what	would	we	do	if	we	wanted	to	separate	the	code
step	from	the	execution	step?	To	accomplish	this,	we	start	building	something
called	a	domain-specific	language.

For	a	concrete	example,	consider	that	you	are	building	a	JIT	(dynamically
compiled)	interpreter	for	JavaScript.	The	Mozilla	project	has	several	projects
dedicated	to	JS	engines	built	in	Rust	(https://blog.mozilla.org/javascript/2017/10/20/h
olyjit-a-new-hope/).	This	is	a	real	application	for	which	Rust	is	well-suited.	To	use
an	ADT	in	a	JIT	compiled	interpreter,	we	want	two	things:

To	evaluate	ADT	expressions	directly	within	the	interpreter
To	compile	ADT	expressions	if	selected	for	compilation

So,	any	part	of	our	JavaScript	expressions	can	either	be	interpreted	or	compiled

https://blog.mozilla.org/javascript/2017/10/20/holyjit-a-new-hope/

at	any	time.	If	an	expression	is	compiled,	then	we	want	all	further	evaluations	to
use	the	compiled	version.	The	key	to	implementing	this	cleanly	is	to	put	some
extra	weight	on	the	type	system.	These	heavy	type	definitions	are	the	essence	of
the	ADT	concept.	Here	is	a	definition	of	a	very	small	subset	of	JavaScript	using
an	ADT:	struct	JSJIT(u64);

enum	JSJITorExpr	{
Jit	{	label:	Box<JSJIT>	},
Expr	{	expr:	Box<JSExpr>	}
}

enum	JSExpr	{
Integer	{	value:	u64	},
String	{	value:	String	},
OperatorAdd	{	lexpr:	Box<JSJITorExpr>,	rexpr:	Box<JSJITorExpr>	},
OperatorMul	{	lexpr:	Box<JSJITorExpr>,	rexpr:	Box<JSJITorExpr>	}
}

Here,	we	can	see	that	each	intermediate	expression	has	enough	information	to	be
evaluated,	but	also	has	enough	information	to	be	compiled.	We	could	have	easily
wrapped	the	Add	or	Mul	operator	into	closures,	but	that	would	disallow	JIT
optimization.	We	need	to	maintain	the	full	representation	here	in	order	to	permit
JIT	compilation.	Also,	note	the	indirection	between	each	point	where	the
program	decides	whether	to	evaluate	an	expression	or	to	call	into	compiled	code.

The	next	step	is	to	implement	an	evaluation	program	for	each	expression	form.
We	could	break	this	into	traits,	or	define	the	evaluation	as	one	larger	function.	To
keep	the	functional	style,	we	will	define	a	single	function.	To	evaluate	an
expression,	we	will	use	a	pattern	match	on	the	JSJITorExpr	expression.	This	JIT
expression	breaks	down	into	either	a	code	address	which	is	run	by	calling	the
jump	function	or	an	expression	which	must	be	evaluated	dynamically.	This	pattern
gives	us	the	best	of	both	worlds,	mixing	compiled	code	and	interpreted	code
together.	The	code	is	as	follows:	fn	jump(l:	JSJIT)	->	JSJITorExpr
{
//jump	to	compiled	code
//this	depends	on	implementation
//so	we	will	just	leave	this	as	a	stub

JSJITorExpr::Jit	{	label:	JSJIT(0)	}
}

fn	eval(e:	JSJITorExpr)	->	JSJITorExpr
{
match	e
{
JSJITorExpr::Jit	{	label:	label	}	=>	jump(label),
JSJITorExpr::Expr	{	expr:	expr	}	=>	{
let	rawexpr	=	*expr;
match	rawexpr
{
JSExpr::Integer	{..}	=>	JSJITorExpr::Expr	{	expr:	Box::new(rawexpr)	},
JSExpr::String	{..}	=>	JSJITorExpr::Expr	{	expr:	Box::new(rawexpr)	},
JSExpr::OperatorAdd	{	lexpr:	l,	rexpr:	r	}	=>	{
let	l	=	eval(*l);
let	r	=	eval(*r);
//call	add	op	codes	for	possible	l,r	representations
//should	return	wrapped	value	from	above
JSJITorExpr::Jit	{	label:	JSJIT(0)	}
}
JSExpr::OperatorMul	{	lexpr:	l,	rexpr:	r	}	=>	{
let	l	=	eval(*l);
let	r	=	eval(*r);
//call	mul	op	codes	for	possible	l,r	representations
//should	return	wrapped	value	from	above
JSJITorExpr::Jit	{	label:	JSJIT(0)	}
}
}
}
}
}

Another	example	of	the	ADT	concept	is	in	heterogeneous	lists.	Heterogeneous
lists	are	not	like	other	generic	containers,	such	as	vectors.	Rust	vectors	are
homogeneous,	meaning	all	items	are	required	to	have	the	same	type.	By
comparison,	a	heterogeneous	list	can	have	any	mix	of	types	of	elements.	This

may	sound	like	a	tuple,	but	tuples	have	a	fixed	length	and	flat	type	signature.
Similarly,	heterogeneous	lists	must	have	a	length	and	type	signature	known	at
compile	time,	but	that	knowledge	can	be	achieved	incrementally.	Heterogeneous
lists	are	permitted	to	work	with	partial	knowledge	of	the	list	type,	parameterizing
the	knowledge	that	they	do	not	need.

Here	is	an	example	implementation	of	a	heterogeneous	list:	pub	trait	HList:
Sized	{}

pub	struct	HNil;
impl	HList	for	HNil	{}

pub	struct	HCons<H,	T>	{
pub	head:	H,
pub	tail:	T,
}
impl<H,	T:	HList>	HList	for	HCons<H,	T>	{}
impl<H,	T>	HCons<H,	T>	{
pub	fn	pop(self)	->	(H,	T)	{
(self.head,	self.tail)
}
}

Notice	how	this	definition	intentionally	uses	a	trait	to	obscure	type	information,
without	which,	such	a	definition	would	be	impossible.	A	declaration	of	an	HList
would	look	like	the	following:	let	hl	=	HCons	{
head:	2,
tail:	HCons	{
head:	"abcd".to_string(),
tail:	HNil
}
};

let	(h1,t1)	=	hl.pop();
let	(h2,t2)	=	t1.pop();
//this	would	fail
//HNil	has	no	.pop	method

//t2.pop();

Rust	can	be	a	bit	rigid	with	regards	to	type	checking,	at	times.	However,	there
are	also	many	workarounds	that	permit	complex	behavior	that	might	seem
impossible	at	first.

Investigating	parametric	lifetimes
Lifetimes	can	get	complicated	quickly.	For	example,	when	a	lifetime	is	used	as	a
parameter,	it	is	called	a	parametric	lifetime.	To	cover	the	most	common
problems,	we	will	break	down	the	lifetime	concept	into	four	distinct	concepts:

Lifetimes	on	ground	types
Lifetimes	on	generic	types
Lifetimes	on	traits
Lifetime	subtyping

	

	

Defining	lifetimes	on	ground	types
A	ground	type	is	a	type	with	no	parameters.	Defining	lifetimes	on	ground	types
is	the	simplest	possible	case.	All	traits,	fields,	size,	and	any	other	information	is
directly	available	for	group	types.

Here	is	a	function	declaring	a	lifetime	on	a	ground	type:	fn	ground_lifetime<'a>
(x:	&'a	u64)	->	&'a	u64
{
x
}

let	x	=	3;
ground_lifetime(&x);

Declaring	lifetimes	is	often	unnecessary.	Other	times,	declaring	lifetimes	is
necessary.	The	inference	rules	are	complicated	and	are	sometimes	extended,	so
we	will	ignore	that	part	for	now.

Defining	lifetimes	on	generic	types
Declaring	lifetimes	on	generic	types	requires	one	additional	consideration.	All
generic	types	that	have	a	specified	lifetime	must	be	parameterized	as	having	that
lifetime.	The	parameter	declaration	must	be	compatible	with	how	the	parameter
is	used.

Here	is	an	example	that	will	fail:	struct	Ref<'a,	T>(&'a	T);

The	struct	definition	uses	the	parameter	T	having	a	lifetime	of	'a;	however,	the
parameter	T	is	not	required	to	have	a	lifetime	compatible	with	'a.	The	parameter	T
must	be	constrained	by	its	own	lifetime.	By	doing	this,	the	code	becomes	as
follows:	struct	Ref<'a,	T:	'a>(&'a	T);

Now	that	the	parameter	T	has	an	explicit	bound	compatible	with	'a,	the	code	will
compile.

Defining	lifetimes	on	traits
When	defining,	implementing,	and	instantiating	an	object	implementing	a	trait,	it
is	possible	that	both	the	object	and	trait	will	require	a	lifetime.	Usually,	it	is
possible	to	infer	the	lifetime	of	the	trait	from	the	lifetime	of	the	object.	When
this	is	not	possible,	the	programmer	must	declare	a	lifetime	for	the	trait,	which	is
compatible	with	all	other	constraints.	The	code	is	as	follows:	trait	Red	{	}

struct	Ball<'a>	{
diameter:	&'a	i32,
}

impl<'a>	Red	for	Ball<'a>	{	}

static	num:	i32	=	5;
let	obj	=	Box::new(Ball	{	diameter:	&num	})	as	Box<Red	+	'static>;

	

	

Defining	lifetime	subtyping
It	is	possible	to	have	a	single	object	that	requires	a	long	lifetime	for	itself	but
also	needs	a	shorter	lifetime	for	some	of	its	components	or	methods.	This	can	be
accomplished	by	parameterizing	multiple	lifetimes.	This	usually	works	well
unless	the	lifetimes	come	into	conflict.	The	following	is	an	example	of	multiple
lifetimes:	struct	Context<'s>(&'s	mut	String);

impl<'s>	Context<'s>
{
fn	mutate<'c>(&mut	self,	cs:	&'c	mut	String)	->	&'c	mut	String

			{

						let	swap_a	=	self.0.pop().unwrap();

						let	swap_b	=	cs.pop().unwrap();

						self.0.push(swap_b);

						cs.push(swap_a);

						cs

			}

}

fn	main()	{

			let	mut	s	=	"outside	string	context	abc".to_string();

			{

						//temporary	context

						let	mut	c	=	Context(&mut	s);

						{

									//further	temporary	context

									let	mut	s2	=	"inside	string	context	def".to_string();

									c.mutate(&mut	s2);

									println!("s2	{}",	s2);

						}

			}

			println!("s	{}",	s);

}

	

	

Investigating	parametric	types
At	this	point,	it	shouldn't	be	surprising	to	learn	that	all	datatype	declarations	can
be	parameterized.	It	should	be	noted	that	when	declaring	parameterized
datatypes,	the	lifetime	parameters	must	be	located	ahead	of	the	generic
parameters.	Refer	to	the	following	code	for	this:	type	TFoo<'a,	A:	'a>	=	(&'a	A,
u64);

struct	SFoo<'a,	A:	'a>(&'a	A);

struct	SBar<'a,	A:	'a>
{
x:	&'a	A
}

enum	EFoo<'a,	A:	'a>
{
X	{	x:	&'a	A	},
Y	{	y:	&'a	A	},

}

We	have	also	seen	how	traits	can	be	parameterized.	However,	what	happens
when	a	datatype	and	a	trait	both	need	parameters	for	implementation?	There	is	a
special	syntax	for	that,	involving	three	parameter	lists,	and	it	looks	like	the
following:	struct	SBaz<'a,	'b,	A:	'a,	B:	'b>
{
a:	&'a	A,
b:	&'b	B,
}

trait	TBaz<'a,	'b,	A:	'a,	B:	'b>
{
fn	baz(&self);
}

impl<'a,	'b,	A:	'a,	B:	'b>
TBaz<'a,	'b,	A,	B>
for	SBaz<'a,	'b,	A,	B>
{
fn	baz(&self){}
}

There	is	one	more	special	case	that	we	should	mention,	and	that	is	the	case	of
method	ambiguity.	When	multiple	traits	are	implemented	for	a	single	type,	it	is
possible	for	there	to	be	multiple	methods	with	the	same	name.	To	access	the
different	methods,	it	becomes	necessary	to	specify	what	trait	is	intended	to	be
used	when	called.	Here	is	an	example:	trait	Foo	{
fn	f(&self);
}

trait	Bar	{
fn	f(&self);
}

struct	Baz;

impl	Foo	for	Baz	{
fn	f(&self)	{	println!("Baz’s	impl	of	Foo");	}
}

impl	Bar	for	Baz	{
fn	f(&self)	{	println!("Baz’s	impl	of	Bar");	}
}

let	b	=	Baz;

To	call	the	method,	we	must	use	something	called	the	universal	function	call
syntax.	There	are	two	forms	of	the	syntax,	one	short—the	other	longer.	The
short	form	is	usually	sufficient	for	resolving	all	but	the	most	complicated	of
situations.	Here	is	an	example	to	match	the	preceding	type	definitions:
Foo::f(&b);

Bar::f(&b);

<Baz	as	Foo>::f(&b);
<Baz	as	Bar>::f(&b);

There	are	also	several	less	documented	syntax	forms	(https://matematikaadit.github.
io/posts/rust-turbofish.html)	syntax	forms	available	for	various	scenarios	where
parameters	need	to	be	explicitly	provided.	Rust	does	not	currently	have	direct
type	ascription	currently,	so	hints	for	the	compiler	are	provided	as	necessary.

https://matematikaadit.github.io/posts/rust-turbofish.html

Applying	parameterization	concepts
We	have	explored	the	concepts	of	generics	and	parameterization.	Let's	scan
through	the	project	to	see	if	any	concepts	would	be	appropriate	to	use.

Parameterizing	data
Parametric	data	allows	us	to	declare	only	the	minimal	amount	of	semantic
information	required.	Instead	of	specifying	a	type,	we	can	specify	a	generic
parameter	having	a	trait.	Let's	start	by	looking	at	physics.rs	type	declarations:	#
[derive(Clone,Serialize,Deserialize,Debug)]
pub	enum	MotorInput
{
Up	{	voltage:	f64	},
Down	{	voltage:	f64	}
}

#[derive(Clone,Serialize,Deserialize,Debug)]
pub	struct	ElevatorSpecification
{
pub	floor_count:	u64,
pub	floor_height:	f64,

			pub	carriage_weight:	f64

}

#[derive(Clone,Serialize,Deserialize,Debug)]

pub	struct	ElevatorState

{

			pub	timestamp:	f64,

			pub	location:	f64,

			pub	velocity:	f64,

			pub	acceleration:	f64,

			pub	motor_input:	MotorInput

}

pub	type	FloorRequests	=	Vec<u64>;

If	we	remember,	where	we	used	physics.rs	when	we	designed	the	new	MotorInput
implementation,	we	should	notice	a	problem.	We	wanted	to	abstract	MotorInput
behavior	behind	a	trait;	however,	ElevatorState	specifies	a	specific
implementation.	Let's	redefine	ElevatorState	to	use	a	generic	type	for	motor_input.
The	parameter	should	implement	all	traits	of	MotorInput,	and	will,	therefore,
become	as	follows:	#[derive(Clone,Serialize,Deserialize,Debug)]
pub	struct	ElevatorState<MI:	MotorForce	+	MotorVoltage	+	Clone,	'a
serde::Serialize,	'a	serde::Deserialize	+	Debug>

{
pub	timestamp:	f64,
pub	location:	f64,
pub	velocity:	f64,
pub	acceleration:	f64,
pub	motor_input:	MI
}

This	may	look	acceptable	at	first	glance,	but	now	the	MotorInput	parameter	and	all
traits	must	be	declared	along	with	every	mention	of	any	type	that	wraps	MotorInput
or	ElevatorState.	We	get	an	explosion	of	parameters.	There	must	be	a	better	way.

Parameter	explosion,	in	this	case,	would	look	like	the	following,	at	every	type
declaration,	trait	declaration,	implementation,	function,	or	expression:	pub	trait
MotorController
<MI:	MotorForce	+	MotorVoltage	+	Clone,	'a	serde::Serialize,	'a
serde::Deserialize	+	Debug>
{
fn	init(&mut	self,	esp:	ElevatorSpecification,	est:	ElevatorState<MI>);
fn	poll(&mut	self,	est:	ElevatorState<MI>,	dst:	u64)	->	MI;

}

pub	trait	DataRecorder

<MI:	MotorForce	+	MotorVoltage	+	Clone,	'a	serde::Serialize,	'a	serde::Deserialize	+	Debug>

{

			fn	init(&mut	self,	esp:	ElevatorSpecification,	est:	ElevatorState<MI>);

			fn	poll(&mut	self,	est:	ElevatorState<MI>,	dst:	u64);

}

impl	MotorController

<MI:	MotorForce	+	MotorVoltage	+	Clone,	'a	serde::Serialize,	'a	serde::Deserialize	+	Debug>

for	SimpleMotorController

<MI:	MotorForce	+	MotorVoltage	+	Clone,	'a	serde::Serialize,	'a	serde::Deserialize	+	Debug>

{

			...

}	

This	is	all	just	for	one	parameter!	Fortunately,	there	is	another	solution	to	this
problem.	The	technique	uses	something	called	trait	objects.	A	trait	object	is	an
object	implementing	a	trait	but	having	no	known	type	at	compile	time.	Trait
objects,	because	they	have	no	concrete	type,	do	not	need	to	be	parameterized.
The	downside	of	trait	objects	are	that	they	cannot	be	sized,	and	therefore	must
usually	be	handled	indirectly	through	a	Box	or	some	other	sized	container.	Any

attempt	to	size	a	trait	object	will	result	in	a	compiler	error.	Similarly,	any	trait
that	has	a	static	method,	or	is	otherwise	not	object-safe,	cannot	be	used	with	a
trait	object.

We	can	rewrite	the	MotorInput	and	ElevatorState	objects	to	use	trait	objects	as
follows:	#[derive(Clone,Serialize,Deserialize,Debug)]
pub	enum	SimpleMotorInput
{
Up	{	voltage:	f64	},
Down	{	voltage:	f64	}
}

pub	trait	MotorInput:	MotorForce	+	MotorVoltage
{
}

impl	MotorInput	for	SimpleMotorInput	{}

pub	struct	ElevatorState

{

			pub	timestamp:	f64,

			pub	location:	f64,

			pub	velocity:	f64,

			pub	acceleration:	f64,

			pub	motor_input:	Box<MotorInput>

}

Here,	we	declare	that	a	MotorInput	trait	has	two	subtraits	specifying	the	behavior.
Our	ElevatorState	declaration	does	not	require	a	parameter;	however,	the	MotorInput
trait	object	must	be	wrapped	in	a	Box.	This	layer	of	indirection	is	required	due	to
the	inability	of	the	compiler	to	size	the	MotorInput	trait	object	for	compilation.
Also,	because	MotorInput	does	not	implement	Sized,	it	cannot	use	the	Clone	or	serde
macros.	Some	of	our	code	needs	to	be	changed	to	accommodate	this,	but	it	is	not
overwhelming.

Parameterizing	functions	and	trait
objects
In	our	motor	controllers,	we	make	another	baseless	assumption	about	the	motor.
Namely,	that	a	flat	force	will	be	generated	per	voltage	input.	The	suspect	code	in
the	motor	controllers	looks	like	the	following:	let	target_voltage	=	target_force	/
8.0;

The	assumption	may	be	wrong	with	respect	to	the	motor	being	more	or	less
efficient	than	assumed.	Also,	the	assumption	that	generated	force	will	be	linear
with	respect	to	voltage	is	unlikely.	To	satisfy	the	requirements	of	our	motor
controller	and	the	physics	simulation,	we	require	one	function	that	will	consider
the	physical	motor	being	used	and	convert	the	voltage	to	force.	Similarly,	we
need	the	inverse	function	to	convert	the	target	force	to	target	voltage.	We	can
write	these	plainly	as	follows:	pub	fn	force_of_voltage(v:	f64)	->	f64
{
8.0	*	v
}

pub	fn	voltage_of_force(v:	f64)	->	f64
{
v	/	8.0
}

This	is	nice	to	look	at,	but	it	doesn't	fit	into	the	goal	of	abstracting	the	concept	of
a	physical	motor.	We	should	define	these	functions	as	methods	on	an	interface.
This	way,	we	can	use	the	trait	object	pattern	again	to	abstract	away	the	type	of
motor,	as	well	as	the	type	parameter	for	the	motor.	The	code	becomes	as	follows:
pub	trait	Motor
{
fn	force_of_voltage(&self,	v:	f64)	->	f64;
fn	voltage_of_force(&self,	v:	f64)	->	f64;
}

pub	struct	SimpleMotor;
impl	Motor	for	SimpleMotor
{
fn	force_of_voltage(&self,	v:	f64)	->	f64
{
8.0	*	v
}
fn	voltage_of_force(&self,	v:	f64)	->	f64
{
v	/	8.0
}
}

After	declaring	the	Motor	trait	and	an	implementation,	we	can	integrate	this
definition	with	the	ElevatorSpecification	struct.	The	result	is	as	follows:	pub	struct
ElevatorSpecification
{
pub	floor_count:	u64,
pub	floor_height:	f64,
pub	carriage_weight:	f64,
pub	motor:	Box<Motor>
}

Again,	we	lose	the	ability	to	use	certain	derive	macros,	but	the	type	signature	is
much	cleaner	at	least.	The	usage	in	the	motor	controllers	now	supports	multiple
motors:	let	target_voltage	=	self.esp.motor.voltage_of_force(target_force);

We	can	see	that	there	are	some	potential	tradeoffs	between	different	types	of
parameterization	or	generic	behavior.	On	one	hand,	parameters	can	quickly
become	overwhelming	to	keep	track	of.	On	the	other,	side	trait	objects	break
many	languages	with	features	such	as	derive	macros,	anything	that	is	not	object-
safe,	requiring	a	concrete	type,	and	so	on.	Choosing	the	right	tool	is	an	important
decision	that	requires	weighing	the	merits	of	each	option.

Parametric	traits	and
implementations
Now,	we	have	successfully	implemented	Motor	and	MotorInput	as	trait	objects.
However,	we	sacrificed	nice	things	like	Clone,	Serialize,	Deserialize,	and	Debug	to
accomplish	this.	Can	we	reclaim	those	functionalities?

First,	let's	try	to	duplicate	the	functionality.	We	will	call	these	bundled	traits
ElevatorStateClone	and	ElevatorSpecificationClone.	The	signatures	should	look
something	like	the	following	(the	trait	implementations	are	available	in	the
src/physics.rs	file):	pub	trait	ElevatorStateClone
{
fn	clone(&self)	->	ElevatorState;
fn	dump(&self)	->	(f64,f64,f64,f64,f64);
fn	load((f64,f64,f64,f64,f64))	->	ElevatorState;
}

pub	trait	ElevatorSpecificationClone
{
fn	clone(&self)	->	ElevatorSpecification;
fn	dump(&self)	->	(u64,f64,f64,u64);
fn	load((u64,f64,f64,u64))	->	ElevatorSpecification;
}

impl	ElevatorStateClone	for	ElevatorState	{
...
}

These	traits	provide	the	bare	minimum	functionality	to	get	us	back	to	where	we
were	previously	with	serialization	and	copy	semantics.	The	major	downside	is
that	each	definition	is	quite	verbose.	Additionally,	the	serialization	turns	into	a
tuple,	rather	than	going	directly	back	and	forth	between	the	correct	type.

So,	what	precisely	is	the	problem	with	trait	objects?	We	know	that	they	must	be

wrapped	in	Box	types	to	circumvent	the	unknown	size.	Is	this	the	problem?	Here
is	a	program	to	test	this	theory:	#[derive(Serialize,Deserialize)]
struct	Foo
{
bar:	Box<u64>
}

So,	Box	types	can	be	serialized.	The	problem,	then,	must	be	with	the	trait	object.
Let's	try	the	same	thing	with	a	trait	object	to	see	what	happens:	trait	T	{}

#[derive(Serialize,Deserialize)]
struct	S1;
impl	T	for	S1	{}

#[derive(Serialize,Deserialize)]
struct	S2;
impl	T	for	S2	{}

#[derive(Serialize,Deserialize)]
struct	Container
{
field:	Box<T>
}

When	compiling	this	last	snippet,	we	get	the	error,	the	trait
`serde::Deserialize<'_>`	is	not	implemented	for	`T`.	So,	we	can	see	that	the	individual
structs	S1	and	S2	both	implement	Deserialize,	but	that	information	is	obscured.	The
trait	object	T	itself	must	implement	Deserialize.

Making	the	first	attempt	at	serializing	the	trait	object	T,	we	can	follow	the
instructions	for	writing	custom	serialization.	The	result	should	be	something	like
the	following:	impl	Serialize	for	Box<T>
{
fn	serialize<S>(&self,	serializer:	S)	->	Result<S::Ok,	S::Error>
where	S:	Serializer
{
serializer.serialize_unit_struct("S1")
}

}

struct	S1Visitor;
impl<'de>	Visitor<'de>	for	S1Visitor	{
type	Value	=	Box<T>;

fn	expecting(&self,	formatter:	&mut	fmt::Formatter)	->	fmt::Result
{
formatter.write_str("an	S1	structure")
}
fn	visit_unit<E>(self)	->	Result<Self::Value,	E>
where	E:	de::Error

			{

						Result::Ok(Box::new(S1))

			}

}

impl<'de>	Deserialize<'de>	for	Box<T>	{

			fn	deserialize<D>(deserializer:	D)	->	Result<Box<T>,	D::Error>

			where	D:	Deserializer<'de>

			{

						deserializer.deserialize_unit_struct("S1",	S1Visitor)

			}

}

let	bt:	Box<T>	=	Box::new(S1);

let	s	=	serde_json::to_string(&bt).unwrap();

let	bt:	Box<T>	=	serde_json::from_str(s.as_str()).unwrap();

This	is	a	bit	of	a	mess,	but	the	important	parts	are	that	we	want	to	write	S1	or	S2	to
the	serializer	and	check	for	those	tags	to	deserialize.	Essentially,	what	we	are
trying	to	create	is	a	side	enum	to	exist	just	for	the	purpose	of	serialization.
Somehow,	the	serializer	needs	to	know	whether	T	is	an	S1	or	S2	through	the
interface,	so	why	not,	in	turn,	provide	a	method	on	T	that	will	return	an	enum?
Enums	are	also	serializable	with	macros,	so	we	could	pass	that	automatic
serialization	through	to	T.	Let's	try	that,	starting	with	the	type	and	trait
definitions,	as	follows:	#[derive(Clone,Serialize,Deserialize)]
enum	T_Enum
{
S1(S1),
S2(S2),
}

trait	T
{
fn	as_enum(&self)	->	T_Enum;
}

#[derive(Clone,Serialize,Deserialize)]
struct	S1;
impl	T	for	S1
{
fn	as_enum(&self)	->	T_Enum
{
T_Enum::S1(self.clone())
}

}

#[derive(Clone,Serialize,Deserialize)]

struct	S2;

impl	T	for	S2

{

			fn	as_enum(&self)	->	T_Enum

			{

						T_Enum::S2(self.clone())

			}

}

Here,	we	can	see	that	there	is	no	issue	in	permitting	a	method	on	a	trait	object
that	turns	the	object	into	an	enum.	This	relation	is	natural	and	provides	an	escape
hatch	to	convert	back	and	forth	between	the	trait	objects	and	its	internal
representation.	Now,	to	implement	serialization,	we	just	need	to	wrap	and
unwrap	the	enum	serializers:	impl	Serialize	for	Box<T>
{
fn	serialize<S>(&self,	serializer:	S)	->	Result<S::Ok,	S::Error>
where	S:	Serializer
{
self.as_enum().serialize(serializer)
}
}

impl<'de>	Deserialize<'de>	for	Box<T>
{

fn	deserialize<D>(deserializer:	D)	->	Result<Box<T>,	D::Error>
where	D:	Deserializer<'de>
{
let	result	=	T_Enum::deserialize(deserializer);
match	result
{
Result::Ok(te)	=>	{
match	te	{
T_Enum::S1(s1)	=>	Result::Ok(Box::new(s1.clone())),
T_Enum::S2(s2)	=>	Result::Ok(Box::new(s2.clone()))
}
}
Result::Err(err)	=>	Result::Err(err)
}
}
}

That	wasn't	so	bad,	was	it?	With	this	technique,	we	can	hide	parameters	behind
trait	objects	while	still	benefiting	from	the	direct	access	to	data	and	macro-
derived	traits.	There	is	a	little	bit	of	boilerplate	here.	Luckily	though,	for	each
macro,	the	code	is	almost	identical	for	whatever	type	you	are	using.	Remember
this	one;	it	could	be	useful.

Summary
In	this	chapter,	we	explored	the	basic	and	deeper	concepts	of	generic	and
parameterized	programming.	We	learned	how	to	add	lifetime,	type,	and	trait
parameters	to	declarations	of	types,	traits,	functions,	and	implementations.	We
also	examined	advanced	techniques	to	selectively	preserve	or	obscure	type
information	as	desired.

Applying	these	concepts	to	the	elevator	simulation,	we	observed	how
parameterization	and	generics	can	create	fully	abstract	interfaces.	By	using	trait
objects,	it	is	possible	to	completely	separate	trait	interfaces	from	any
implementation.	We	also	observed	the	downsides	or	difficulties	of
parameterization	and	generics.	Excessive	use	of	parameterization	can	lead	to
parameter	leaks,	potentially	requiring	all	code	that	interfaces	with	an	interface	to
also	become	parameterized	itself.	On	the	other	hand,	we	observed	the	difficulty
associated	with	erasing	type	information	using	trait	objects.	Choosing	the	right
amount	of	information	to	preserve	is	important.

In	the	next	chapter,	we	will	learn	about	applied	project	structure	with	complex
requirements.	The	client	will	respond	to	the	project	proposal	and	your	team	will
respond	to	new	requirements.

Questions
1.	 What	is	an	algebraic	datatype?
2.	 What	is	polymorphism?
3.	 What	is	parametric	polymorphism?
4.	 What	is	a	ground	type?
5.	 What	is	universal	function	call	syntax?
6.	 What	are	the	possible	type	signatures	of	a	trait	object?
7.	 What	are	two	ways	to	obscure	type	information?
8.	 How	is	a	subtrait	declared?

Code	Organization	and	Application
Architecture
Previously,	we	outlined	some	basic	concepts	of	project	planning	and	code
architecture.	The	strategy	we	recommended	specifically	called	for	gathering	and
listing	requirements	before	adapting	them	into	pseudocode,	stub	code,	and
eventually	a	completed	project.	This	process	is	still	very	applicable	to	larger
projects,	but	we	have	not	covered	the	aspect	of	file	and	module	organization.
How	should	code	be	grouped	into	files	and	modules?

To	answer	this	question,	we	recommend	something	called	the	workshop	model.
Imagine	a	physical	workshop	with	pegboards,	shelves,	jars,	toolboxes,	and	larger
equipment	on	the	floor.	When	speaking	about	code	architecture,	experts	often
talk	about	different	organizational	strategies.	It	is	possible	to	group	code	by	type,
by	purpose,	by	project	layer,	or	by	convenience.	There	are	infinite	possible
strategies,	and	these	are	just	four	common	ones.	None	of	these	are	wrong,
though	we	recommend	against	choosing	any	one	specifically.	Our	reason	is
simple—choose	all	of	them.	Nuts	and	bolts	can	be	organized	into	jars	(by	type).
Hand	tools	can	be	placed	in	a	toolbox	(by	purpose).	Large	tools	can	be	placed	on
the	floor	(by	project	layer).	Common	tools	can	be	hung	on	a	pegboard	(by
convenience).	None	of	these	strategies	are	invalid,	and	all	of	them	can	be	used	in
the	same	workshop	(project).

In	this	chapter,	we	will	reorganize	the	project	as	it	grows.	We	will	combine	the
principles	of	planning	and	architecture	that	we	previously	introduced	with	new
concepts	of	code	organization	to	develop	a	large	software	project	that	is
navigable	and	maintainable.

The	learning	outcomes	of	this	chapter	are	as	follows:

Recognizing	and	applying	by	type	organization
Recognizing	and	applying	by	purpose	organization
Recognizing	and	applying	by	layer	organization
Recognizing	and	applying	by	convenience	organization
Minimizing	code	waste	during	project	reorganization

Technical	requirements
A	recent	version	of	Rust	is	necessary	to	run	the	examples	provided:

https://www.rust-lang.org/en-US/install.html

This	chapter's	code	is	also	available	on	GitHub:

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Specific	installation	and	build	instructions	are	also	included	in	each	chapter's
README.md	file.

https://www.rust-lang.org/en-US/install.html
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Shipping	a	product	without
sacrificing	quality
The	client	has	finished	negotiating	with	your	sales	team—you	won	the	contract.
Now	that	the	contract	is	signed,	your	team	is	on	task	to	bring	the	simulation	up
to	specification	to	run	all	of	the	elevator	systems.	The	client	has	provided
specifications	for	each	of	the	three	buildings,	elevators,	motor	control,	and
braking	systems.	You	also	learn	that	the	elevator	motors	have	intelligent	motor
control	software	that	regulates	internal	voltage	and	current	dynamically.	To
control	the	motor,	you	will	only	be	expected	to	supply	the	desired	force	output.
The	full	specifications	are	as	follows:

For	building	1,	there	are	the	following:

Floor	heights:	8m,	4m,	4m,	4m,	4m
Elevator	weight:	1,200	kg
Elevator	motor:	Maximum	50,000	N
Elevator	driver:	Software	interface	supplied

For	building	2,	there	are	the	following:

Floor	heights:	5m,	5m,	5m,	5m,	5m,	5m,	5m,	5m
Elevator	weight:	1,350	kg
Elevator	motor:	maximum	1,00,000	N
Elevator	driver:	Software	interface	supplied

For	building	3,	there	are	the	following:

Floor	heights:	6m,	4m,	4m,	4m
Elevator	weight:	1,400	kg
Elevator	motor:	Maximum	90,000	N
Elevator	driver:	Software	interface	supplied

The	program	now	needs	to	work	in	operational	mode,	where	new	floor	requests
are	accepted	and	added	to	the	queue.	The	simulation	should	also	continue	to
work,	now	with	all	three	building	specifications.	The	simulation	should	verify
that	promised	performance	and	quality	metrics	are	all	satisfied.	Other	than	that,

your	team	is	free	to	develop	the	project	as	you	see	fit.

You	decide	that	now	is	a	good	time	to	rethink	the	organization	of	the	project,
with	significant	new	changes	required.	Using	good	architecture	and	project
organization	practices,	you	will	move	code	around	accordingly	to	group
components	orderly	and	conveniently.

	

	

	

Reorganizing	the	project
Now	that	we	have	some	ideas	of	good	project	architecture,	let's	plan	the	project's
reorganization.	Let's	list	the	possible	workshop	organization	methods:

By	type
By	purpose
By	layer
By	convenience

The	by	type	organization	should	be	used	for	workshop	nuts	and	bolts	type
components.	Nuts	and	bolts	are	highly	uniform	components	that	have	a	different
diameter,	length,	grade,	and	so	on.	We	have	a	few	good	matches	here,	so	let's	list
objects	and	interfaces	that	could	be	grouped	this	way:

Motors
Buildings
Elevator	controllers/drivers

The	by	purpose	organization	should	be	used	for	miscellaneous	tools	that	have	a
common	purpose.	We	have	some	good	candidates	for	this	style	of	organization,
too:

Transport	planning	(static/dynamic)
The	physical	interface	to	an	elevator

The	by	layer	organization	should	be	used	for	distinct	architectural	components
that	fit	well	within	normal	program	logic.	An	example	of	this	would	be	our
physics	layer,	which	is	logically	independent	of	other	modules.	The	physics
layer	exists	solely	to	store	constants,	formulas,	and	modeling	procedures.	Here,
we	group	this	by	layer:

Physics	modeling

The	by	convenience	organization	should	be	used	for	common	or	difficult
components.	Executables	are	a	good	fit	for	this	type	of	organization	because	they
are	always	an	endpoint,	not	a	library,	and	don't	typically	fit	into	any	other

organization	well:

Simulation	executable
Analyze	executable
Physical	elevator	driver	executable

	

	

Planning	content	of	files	by	type
These	files	will	be	organized	using	the	by	type	method.

Organizing	the	motor_controllers.rs
module
All	motors	will	be	grouped	by	type	in	the	motor_controller.rs	module.	There	will
be	three	motors	with	varying	properties.	This	module	should	provide	a	trait
interface	to	all	motors	as	well	as	each	implementation.	The	trait	should	define	a
method	to	generate	a	motor	input	from	the	desired	force	output	and	also	a
method	to	accept	a	motor	input	to	generate	a	force.	The	module	must	also	link	in
the	binary	drivers	for	each	motor	controller.	The	old	motor	controller	logic	to
dynamically	control	the	elevator	motor	will	be	moved	into	a	new	file	called
motion_controllers.rs.	The	following	should	be	defined	in	this	module:

Motor	input	trait
Motor	controller	trait
Motor	input	1	implementation
Motor	controller	1	implementation
Motor	input	2	implementation
Motor	controller	2	implementation
Motor	input	3	implementation
Motor	controller	3	implementation

	

	

Organizing	the	buildings.rs	module
All	building	specifications	will	be	grouped	by	type	in	the	building.rs	module.
There	will	be	three	building	specifications.	The	building	should	encapsulate	all
aspects	of	elevator	behavior	and	control,	as	well	as	a	specification	for	the
building	itself.	The	module	should	contain	the	following:

Building	trait
Building	1	implementation
Building	2	implementation
Building	3	implementation

	

	

Planning	content	of	files	by	purpose
These	files	will	be	organized	using	the	by	purpose	method.

Organizing	the	motion_controllers.rs
module
Motion	controllers	will	be	organized	by	purpose.	The	motion	controllers	will	be
responsible	for	tracking	elevator	state	to	control	the	motor's	dynamics.	The
motion	controllers	module	should	contain	the	following:

Motion	Controller	trait
Smooth	Motion	Controller	implementation

Organizing	the	trip_planning.rs
module
Trip	planning	will	be	organized	by	purpose.	The	planner	should	work	in	two
modes:	static	and	dynamic.	For	static	mode,	the	planner	should	accept	a	list	of
floor	requests	to	process.	For	dynamic	mode,	the	planner	should	accept	floor
requests	as	they	come	dynamically	and	add	them	to	the	queue.	The	planner
module	should	contain	the	following:

Planner	trait
Static	planner	implementation
Dynamic	planner	implementation

	

	

Organizing	the	elevator_drivers.rs
module
All	elevator	drivers	will	be	organized	by	purpose	in	the	elevator_driver.rs	module.
There	are	three	elevator	drivers	that	provide	binary	interfaces	to	be	linked.	The
elevator	driver	module	should	contain	a	trait	to	define	an	interface	to	elevator
drivers	as	well	as	the	three	implementations.	The	planner	module	should	contain
the	following:

Elevator	driver	trait
Elevator	driver	1	implementation
Elevator	driver	2	implementation
Elevator	driver	3	implementation

	

	

Planning	content	of	files	by	layer
These	files	will	be	organized	using	the	by	layer	method.

Organizing	the	physics.rs	module
The	physics	module	will	group	all	physics-related	code	by	layer.	There	will	be
miscellaneous	code	here,	though	it	should	all	fit	in	the	form	of	some	sort	of
simulation	or	prediction.	The	module	should	contain	the	following:

Unit	conversions
Formula	implementations
Any	other	logic	required	for	the	simulation	or	operation	of	elevators
Physics	simulation	loop

	

	

Organizing	the	data_recorder.rs
module
The	data	recorder	module	will	move	the	DataRecorder	trait	and	implementation	into
its	own	module.	It	should	contain	the	following:

The	DataRecorder	trait
Simple	data	recorder	implementation

Planning	the	content	of	files	by
convenience
These	files	will	be	organized	using	the	by	convenience	method.

Organizing	the	simulate_trip.rs
executable
The	simulate_trip.rs	executable	will	be	organized	by	convenience.	The	scope	of
the	trip	simulation	executable	has	not	changed	significantly.	This	file	should
contain	the	following:

Argument	and	input	parsing
Data	logger	definition
Simulation	setup
Run	simulation

Organizing	the	analyze_trip.rs
executable
The	analyze_trip.rs	executable	will	be	organized	by	convenience.	The	scope	of
the	analyze	trip	executable	has	not	changed	significantly.	This	file	should
contain	the	following:

Argument	and	input	parsing
Check	specifications	for	acceptance	or	rejection

Organizing	the	operate_elevator.rs
executable
The	operate_elevator.rs	executable	will	be	organized	by	convenience.	The	operate
elevator	executable	should	closely	resemble	the	simulate	elevator	executable
logic.	This	file	should	contain	the	following:

Argument	and	input	parsing
Setup	elevator	drivers	to	match	specified	building	code
Run	the	elevator	with	dynamic	planning

Mapping	code	changes	and	additions
Now	that	we	have	organized	our	concepts,	data	structures,	and	logic	into	files,
we	can	now	proceed	with	the	normal	process	to	transform	requirements	into
code.	For	each	module,	we	will	look	at	the	required	elements	and	produce	code
to	satisfy	those	requirements.

Here,	we	break	down	all	code	development	steps	by	module.	Different	modules
have	different	organizations,	so	pay	attention	for	patterns	regarding	organization
and	code	development.

	

	

	

Developing	code	by	type
These	files	will	be	organized	using	the	by	type	method.

Writing	the	motor_controllers.rs
module
The	new	motor_controller	module	serves	as	an	adapter	to	all	of	the	linked	motor
drivers	and	their	interfaces,	and	provides	a	single	uniform	interface.	Let's	see
how:

1.	 First,	let's	link	all	the	drivers	from	the	software	provided	into	our	program:

use	libc::c_int;

#[link(name	=	"motor1")]

extern	{

			pub	fn	motor1_adjust_motor(target_force:	c_int)	->	c_int;

}

#[link(name	=	"motor2")]

extern	{

			pub	fn	motor2_adjust_motor(target_force:	c_int)	->	c_int;

}

#[link(name	=	"motor3")]

extern	{

			pub	fn	motor3_adjust_motor(target_force:	c_int)	->	c_int;

}

This	section	tells	our	program	to	link	to	statically	compiled	libraries
named	something	like	libmotor1.a,	libmotor2.a,	and	libmotor3.a.	Our	example
chapter	also	contains	the	source	and	build	script	for	these	libraries,	so
you	can	inspect	each	one.	In	a	full	project,	there	are	many	ways	to	link	to
an	external	binary	library,	this	being	only	one	of	many	options.

2.	 Next,	we	should	make	a	trait	for	MotorInput	and	a	generic	MotorDriver
interface,	including	implementations	for	each	motor.	The	code	is	as	follows:

#[derive(Clone,Serialize,Deserialize,Debug)]

pub	enum	MotorInput

{

			Motor1	{	target_force:	f64	},

			Motor2	{	target_force:	f64	},

			Motor3	{	target_force:	f64	},

}

pub	trait	MotorDriver

{

			fn	adjust_motor(&self,	input:	MotorInput);

}

struct	Motor1;

impl	MotorDriver	for	Motor1	{	...	}

//Motor	2

//Motor	3

3.	 Next,	we	should	implement	the	motor	controller	trait	and	implementations.
The	motor	controller	should	wrap	motor	information	and	drivers	into	a
uniform	interface.	The	MotorDriver	and	MotorController	trait	here	are	coerced
into	a	simple	upward/downward	force	model.	Therefore,	the	relation
between	driver	and	controller	is	one-to-one	and	cannot	be	completely
abstracted	into	a	common	trait.	The	code	for	it	is	as	follows:

pub	trait	MotorController

{

			fn	adjust_motor(&self,	f:	f64);

			fn	max_force(&self)	->	f64;

}

pub	struct	MotorController1

{

			motor:	Motor1

}

impl	MotorController	for	MotorController1	{	...	}

//Motor	Controller	2	...

//Motor	Controller	3	...

The	entire	code	for	these	is	present	in	the	GitHub	repository	at:	https://github.com/
PacktPublishing/Hands-On-Functional-Programming-in-RUST.

	

	

	

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Writing	the	buildings.rs	module
The	building	module	is	again	grouped	by	type.	There	should	be	a	common	trait
interface	that	is	implemented	by	the	three	buildings.	The	building	traits	and
structures	should	additionally	wrap	and	expose	interfaces	to	appropriate	elevator
drivers	and	motor	controllers.	The	code	is	as	follows:

1.	 First,	we	define	the	Building	trait:

pub	trait	Building

{

			fn	get_elevator_driver(&self)	->	Box<ElevatorDriver>;

			fn	get_motor_controller(&self)	->	Box<MotorController>;

			fn	get_floor_heights(&self)	->	Vec<f64>;

			fn	get_carriage_weight(&self)	->	f64;

			fn	clone(&self)	->	Box<Building>;

			fn	serialize(&self)	->	u64;

}

2.	 Then,	we	define	a	deserialize	helper	function:

pub	fn	deserialize(n:	u64)	->	Box<Building>

{

			if	n==1	{

						Box::new(Building1)

			}	else	if	n==2	{

						Box::new(Building2)

			}	else	{

						Box::new(Building3)

			}

}

3.	 Then,	we	define	some	miscellaneous	helper	functions:

pub	fn	getCarriageFloor(floorHeights:	Vec<f64>,	height:	f64)	->	u64

{

			let	mut	c	=	0.0;

			for	(fi,	fht)	in	floorHeights.iter().enumerate()	{

						c	+=	fht;

						if	height	<=	c	{

									return	(fi	as	u64)

						}

			}

			(floorHeights.len()-1)	as	u64

}

pub	fn	getCumulativeFloorHeight(heights:	Vec<f64>,	floor:	u64)	->	f64

{

			heights.iter().take(floor	as	usize).sum()

}

4.	 Finally,	we	define	the	buildings	and	their	trait	implementations:

pub	struct	Building1;

impl	Building	for	Building1	{	...	}

//Building	2

//Building	3

	

	

Developing	code	by	purpose
These	files	will	be	organized	using	the	by	purpose	method.

Writing	the	motion_controllers.rs
module
The	old	logic	from	motor_controllers.rs	for	dynamically	adjusting	motor	force	will
be	moved	to	this	module.	The	SmoothMotionController	does	not	change	much	and	the
code	becomes	as	follows:	pub	trait	MotionController
{
fn	init(&mut	self,	esp:	Box<Building>,	est:	ElevatorState);
fn	adjust(&mut	self,	est:	&ElevatorState,	dst:	u64)	->	f64;
}

pub	struct	SmoothMotionController
{
pub	esp:	Box<Building>,
pub	timestamp:	f64
}

impl	MotionController	for	SmoothMotionController
{
...
}

	

	

Writing	the	trip_planning.rs	module
The	trip	planner	should	work	in	static	and	dynamic	modes.	The	basic	structure	is
a	FIFO	queue,	pushing	requests	into	the	queue,	and	popping	the	oldest	element.
We	may	be	able	to	unify	both	static	and	dynamic	modes	into	a	single
implementation,	which	would	look	like	the	following.

Trip	planning	will	be	organized	by	purpose.	The	planner	should	work	in	two
modes—static	and	dynamic.	For	static	mode,	the	planner	should	accept	a	list	of
floor	requests	to	process.	For	dynamic	mode,	the	planner	should	accept	floor
requests	as	they	come	dynamically	and	add	them	to	the	queue.	The	planner
module	should	contain	the	following:	use	std::collections::VecDeque;

pub	struct	FloorRequests
{
pub	requests:	VecDeque<u64>
}

pub	trait	RequestQueue
{
fn	add_request(&mut	self,	req:	u64);
fn	add_requests(&mut	self,	reqs:	&Vec<u64>);
fn	pop_request(&mut	self)	->	Option<u64>;
}

impl	RequestQueue	for	FloorRequests
{
fn	add_request(&mut	self,	req:	u64)
{
self.requests.push_back(req);
}
fn	add_requests(&mut	self,	reqs:	&Vec<u64>)
{
for	req	in	reqs
{

self.requests.push_back(*req);
}
}
fn	pop_request(&mut	self)	->	Option<u64>
{
self.requests.pop_front()
}
}

	

	

Writing	the	elevator_drivers.rs
module
The	elevator	drivers	module	should	interface	with	the	static	libraries	provided
and	additionally	provide	a	common	interface	to	all	elevator	drivers.	The	code
looks	like	the	following:	use	libc::c_int;

#[link(name	=	"elevator1")]
extern	{
pub	fn	elevator1_poll_floor_request()	->	c_int;
}

#[link(name	=	"elevator2")]
extern	{
pub	fn	elevator2_poll_floor_request()	->	c_int;
}

#[link(name	=	"elevator3")]
extern	{
pub	fn	elevator3_poll_floor_request()	->	c_int;
}

pub	trait	ElevatorDriver
{
fn	poll_floor_request(&self)	->	Option<u64>;
}

pub	struct	ElevatorDriver1;
impl	ElevatorDriver	for	ElevatorDriver1
{
fn	poll_floor_request(&self)	->	Option<u64>
{
unsafe	{
let	req	=	elevator1_poll_floor_request();

if	req	>	0	{
Some(req	as	u64)
}	else	{
None
}
}
}
}

//Elevator	Driver	2

//Elevator	Driver	3

	

	

Developing	code	by	layer
These	files	will	be	organized	using	the	by	layer	method.

Writing	the	physics.rs	module
The	physics	module	has	become	much	smaller.	It	now	contains	a	few	struct
definitions	and	constants	and	the	central	simulate_elevator	method.	The	result	is	as
follows:

#[derive(Clone,Debug,Serialize,Deserialize)]

pub	struct	ElevatorState	{

			pub	timestamp:	f64,

			pub	location:	f64,

			pub	velocity:	f64,

			pub	acceleration:	f64,

			pub	motor_input:	f64

}

pub	const	MAX_JERK:	f64	=	0.2;

pub	const	MAX_ACCELERATION:	f64	=	2.0;

pub	const	MAX_VELOCITY:	f64	=	5.0;

pub	fn	simulate_elevator(esp:	Box<Building>,	est:	ElevatorState,	floor_requests:	&mut	Box<RequestQueue>,

																									mc:	&mut	Box<MotionController>,	dr:	&mut	Box<DataRecorder>)

{

			//immutable	input	becomes	mutable	local	state

			let	mut	esp	=	esp.clone();

			let	mut	est	=	est.clone();

			//initialize	MotorController	and	DataController

			mc.init(esp.clone(),	est.clone());

			dr.init(esp.clone(),	est.clone());

			//5.	Loop	while	there	are	remaining	floor	requests

			let	original_ts	=	Instant::now();

			thread::sleep(time::Duration::from_millis(1));

			let	mut	next_floor	=	floor_requests.pop_request();

			while	let	Some(dst)	=	next_floor

			{

						//5.1.	Update	location,	velocity,	and	acceleration

						let	now	=	Instant::now();

						let	ts	=	now.duration_since(original_ts)

																		.as_fractional_secs();

						let	dt	=	ts	-	est.timestamp;

						est.timestamp	=	ts;

						est.location	=	est.location	+	est.velocity	*	dt;

						est.velocity	=	est.velocity	+	est.acceleration	*	dt;

						est.acceleration	=	{

									let	F	=	est.motor_input;

									let	m	=	esp.get_carriage_weight();

									-9.8	+	F/m

						};

						//5.2.	If	next	floor	request	in	queue	is	satisfied,	then	remove	from	queue

						if	(est.location	-	getCumulativeFloorHeight(esp.get_floor_heights(),	dst)).abs()	<	0.01	&&

									est.velocity.abs()	<	0.01

						{

									est.velocity	=	0.0;

									next_floor	=	floor_requests.pop_request();

						}

						//5.4.	Print	realtime	statistics

						dr.poll(est.clone(),	dst);

						//5.3.	Adjust	motor	control	to	process	next	floor	request

						est.motor_input	=	mc.poll(est.clone(),	dst);

						thread::sleep(time::Duration::from_millis(1));

			}

}

	

	

Writing	the	data_recorders.rs	module
To	separate	responsibilities	and	not	let	individual	modules	get	too	big,	we	should
move	the	data	recorder	implementation	out	of	the	simulation	and	into	its	own
module.	The	result	is	as	follows:

1.	 Define	the	DataRecorder	trait:

pub	trait	DataRecorder

{

			fn	init(&mut	self,	esp:	Box<Building>,	est:	ElevatorState);

			fn	record(&mut	self,	est:	ElevatorState,	dst:	u64);

			fn	summary(&mut	self);

}

2.	 Define	the	SimpleDataRecorder	struct:

struct	SimpleDataRecorder<W:	Write>

{

			esp:	Box<Building>,

			termwidth:	u64,

			termheight:	u64,

			stdout:	raw::RawTerminal<W>,

			log:	File,

			record_location:	Vec<f64>,

			record_velocity:	Vec<f64>,

			record_acceleration:	Vec<f64>,

			record_force:	Vec<f64>,

}

3.	 Define	the	SimpleDataRecorder	constructor:

pub	fn	newSimpleDataRecorder(esp:	Box<Building>)	->	Box<DataRecorder>

{

			let	termsize	=	termion::terminal_size().ok();

			Box::new(SimpleDataRecorder	{

						esp:	esp.clone(),

						termwidth:	termsize.map(|(w,_)|	w-2).expect("termwidth")	as	u64,

						termheight:	termsize.map(|(_,h)|	h-2).expect("termheight")	as	u64,

						stdout:	io::stdout().into_raw_mode().unwrap(),

						log:	File::create("simulation.log").expect("log	file"),

						record_location:	Vec::new(),

						record_velocity:	Vec::new(),

						record_acceleration:	Vec::new(),

						record_force:	Vec::new()

			})

}

4.	 Define	the	SimpleDataRecorder	implementation	of	the	DataRecorder	trait:

impl<W:	Write>	DataRecorder	for	SimpleDataRecorder<W>

{

			fn	init(&mut	self,	esp:	Box<Building>,	est:	ElevatorState)

			{

						...

			}

			fn	record(&mut	self,	est:	ElevatorState,	dst:	u64)

						...

			}

			fn	summary(&mut	self)

			{

						...

			}

}

5.	 Define	the	miscellaneous	helper	functions:

fn	variable_summary<W:	Write>(stdout:	&mut	raw::RawTerminal<W>,	vname:	String,	data:	&Vec<f64>)	{

			let	(avg,	dev)	=	variable_summary_stats(data);

			variable_summary_print(stdout,	vname,	avg,	dev);

}

fn	variable_summary_stats(data:	&Vec<f64>)	->	(f64,	f64)

{

			//calculate	statistics

			let	N	=	data.len();

			let	sum	=	data.iter().sum::<f64>();

			let	avg	=	sum	/	(N	as	f64);

			let	dev	=	(

							data.clone().into_iter()

							.map(|v|	(v	-	avg).powi(2))

							.sum::<f64>()

							/	(N	as	f64)

).sqrt();

			(avg,	dev)

}

fn	variable_summary_print<W:	Write>(stdout:	&mut	raw::RawTerminal<W>,	vname:	String,	avg:	f64,	dev:	f64)

{

			//print	formatted	output

			writeln!(stdout,	"Average	of	{:25}{:.6}",	vname,	avg);

			writeln!(stdout,	"Standard	deviation	of	{:14}{:.6}",	vname,	dev);

			writeln!(stdout,	"");

}

	

	

Developing	code	by	convenience
These	files	will	be	organized	using	the	by	convenience	method.

Writing	the	simulate_trip.rs
executable
The	simulate	trip	changes	quite	a	bit	because	the	DataRecorder	logic	has	been
removed.	The	initialization	of	the	simulation	is	also	very	different	from	before.
The	end	result	is	as	follows:

1.	 Initialize	ElevatorState:

//1.	Store	location,	velocity,	and	acceleration	state

//2.	Store	motor	input	target	force

let	mut	est	=	ElevatorState	{

			timestamp:	0.0,

			location:	0.0,

			velocity:	0.0,

			acceleration:	0.0,

			motor_input:	0.0

};

2.	 Initialize	the	building	description	and	floor	requests:

//3.	Store	input	building	description	and	floor	requests

let	mut	esp:	Box<Building>	=	Box::new(Building1);

let	mut	floor_requests:	Box<RequestQueue>	=	Box::new(FloorRequests	{

			requests:	Vec::new()

});

3.	 Parse	the	input	and	store	it	as	building	description	and	floor	requests:

//4.	Parse	input	and	store	as	building	description	and	floor	requests

match	env::args().nth(1)	{

			Some(ref	fp)	if	*fp	==	"-".to_string()	=>	{

						...

			},

			None	=>	{

						...

			},

			Some(fp)	=>	{

						...

			}

}

4.	 Initialize	the	data	recorder	and	motion	controller:

let	mut	dr:	Box<DataRecorder>	=	newSimpleDataRecorder(esp.clone());

let	mut	mc:	Box<MotionController>	=	Box::new(SmoothMotionController	{

		timestamp:	0.0,

		esp:	esp.clone()

});

5.	 Run	the	elevator	simulation:

simulate_elevator(esp,	est,	&mut	floor_requests,	&mut	mc,	&mut	dr);

6.	 Print	the	simulation	summary:

dr.summary();

	

	

Writing	the	analyze_trip.rs
executable
The	analyze	trip	executable	will	only	change	a	little	bit,	but	only	to
accommodate	symbols	that	have	been	moved	and	types	that	are	now	serializable
with	SerDe.	The	result	is	as	follows:

1.	 Define	the	Trip	data	structure:

#[derive(Clone)]

struct	Trip	{

			dst:	u64,

			up:	f64,

			down:	f64

}

2.	 Initialize	the	variables:

let	simlog	=	File::open("simulation.log").expect("read	simulation	log");

let	mut	simlog	=	BufReader::new(&simlog);

let	mut	jerk	=	0.0;

let	mut	prev_est:	Option<ElevatorState>	=	None;

let	mut	dst_timing:	Vec<Trip>	=	Vec::new();

let	mut	start_location	=	0.0;

3.	 Iterate	over	log	lines	and	initialize	the	elevator	specification:

let	mut	first_line	=	String::new();

let	len	=	simlog.read_line(&mut	first_line).unwrap();

let	spec:	u64	=	serde_json::from_str(&first_line).unwrap();

let	esp:	Box<Building>	=	buildings::deserialize(spec);

for	line	in	simlog.lines()	{

			let	l	=	line.unwrap();

			//Check	elevator	state	records

}

4.	 Check	the	elevator	state	records:

let	(est,	dst):	(ElevatorState,u64)	=	serde_json::from_str(&l).unwrap();

let	dl	=	dst_timing.len();

if	dst_timing.len()==0	||	dst_timing[dl-1].dst	!=	dst	{

			dst_timing.push(Trip	{	dst:dst,	up:0.0,	down:0.0	});

}

if	let	Some(prev_est)	=	prev_est	{

			let	dt	=	est.timestamp	-	prev_est.timestamp;

			if	est.velocity	>	0.0	{

						dst_timing[dl-1].up	+=	dt;

			}	else	{

						dst_timing[dl-1].down	+=	dt;

			}

			let	da	=	(est.acceleration	-	prev_est.acceleration).abs();

			jerk	=	(jerk	*	(1.0	-	dt))	+	(da	*	dt);

			if	jerk.abs()	>	0.22	{

						panic!("jerk	is	outside	of	acceptable	limits:	{}	{:?}",	jerk,	est)

			}

}	else	{

			start_location	=	est.location;

}

if	est.acceleration.abs()	>	2.2	{

			panic!("acceleration	is	outside	of	acceptable	limits:	{:?}",	est)

}

if	est.velocity.abs()	>	5.5	{

			panic!("velocity	is	outside	of	acceptable	limits:	{:?}",	est)

}

prev_est	=	Some(est);

5.	 Check	that	the	elevator	does	not	backup:

//elevator	should	not	backup

let	mut	total_time	=	0.0;

let	mut	total_direct	=	0.0;

for	trip	in	dst_timing.clone()

{

			total_time	+=	(trip.up	+	trip.down);

			if	trip.up	>	trip.down	{

						total_direct	+=	trip.up;

			}	else	{

						total_direct	+=	trip.down;

			}

}

if	(total_direct	/	total_time)	<	0.9	{

			panic!("elevator	back	up	is	too	common:	{}",	total_direct	/	total_time)

}

6.	 Check	that	the	trips	finish	within	20%	of	their	theoretical	limit:

let	mut	trip_start_location	=	start_location;

let	mut	theoretical_time	=	0.0;

let	floor_heights	=	esp.get_floor_heights();

for	trip	in	dst_timing.clone()

{

			let	next_floor	=	getCumulativeFloorHeight(floor_heights.clone(),	trip.dst);

			let	d	=	(trip_start_location	-	next_floor).abs();

			theoretical_time	+=	(

						2.0*(MAX_ACCELERATION	/	MAX_JERK)	+

						2.0*(MAX_JERK	/	MAX_ACCELERATION)	+

						d	/	MAX_VELOCITY

);

			trip_start_location	=	next_floor;

}

if	total_time	>	(theoretical_time	*	1.2)	{

			panic!("elevator	moves	to	slow	{}	{}",	total_time,	theoretical_time	*	1.2)

}

	

	

Writing	the	operate_elevator.rs
executable
The	operate	elevator	is	very	similar	to	the	simulate_trip.rs	and	physics
run_simulation	code.	The	most	significant	difference	is	the	ability	to	continue
running	while	dynamically	accepting	new	requests	and	adjusting	motor	control
using	the	linked	libraries.	In	the	main	executable,	we	follow	the	same	logical
process	as	before,	adjusted	for	new	names	and	type	signatures:

1.	 Initialize	ElevatorState:

//1.	Store	location,	velocity,	and	acceleration	state

//2.	Store	motor	input	target	force

let	mut	est	=	ElevatorState	{

			timestamp:	0.0,

			location:	0.0,

			velocity:	0.0,

			acceleration:	0.0,

			motor_input:	0.0

};

2.	 Initialize	MotionController:

let	mut	mc:	Box<MotionController>	=	Box::new(SmoothMotionController	{

			timestamp:	0.0,

			esp:	esp.clone()

});

mc.init(esp.clone(),	est.clone());

3.	 Start	the	operating	loop	to	process	incoming	floor	requests:

//5.	Loop	continuously	checking	for	new	floor	requests

let	original_ts	=	Instant::now();

thread::sleep(time::Duration::from_millis(1));

let	mut	next_floor	=	floor_requests.pop_request();

while	true

{

			if	let	Some(dst)	=	next_floor	{

						//process	floor	request

			}

			//check	for	dynamic	floor	requests

			if	let	Some(dst)	=	esp.get_elevator_driver().poll_floor_request()

			{

						floor_requests.add_request(dst);

			}

}

4.	 In	the	processing	loop,	update	the	physics	approximations:

//5.1.	Update	location,	velocity,	and	acceleration

let	now	=	Instant::now();

let	ts	=	now.duration_since(original_ts)

												.as_fractional_secs();

let	dt	=	ts	-	est.timestamp;

est.timestamp	=	ts;

est.location	=	est.location	+	est.velocity	*	dt;

est.velocity	=	est.velocity	+	est.acceleration	*	dt;

est.acceleration	=	{

			let	F	=	est.motor_input;

			let	m	=	esp.get_carriage_weight();

			-9.8	+	F/m

};

5.	 If	the	current	floor	request	is	satisfied,	remove	it	from	the	queue:

//5.2.	If	next	floor	request	in	queue	is	satisfied,	then	remove	from	queue

if	(est.location	-	getCumulativeFloorHeight(esp.get_floor_heights(),	dst)).abs()	<	0.01	&&	est.velocity.abs()	<	0.01

{

			est.velocity	=	0.0;

			next_floor	=	floor_requests.pop_request();

}

6.	 Adjust	the	motor	control:

//5.3.	Adjust	motor	control	to	process	next	floor	request

est.motor_input	=	mc.poll(est.clone(),	dst);

//Adjust	motor

esp.get_motor_controller().adjust_motor(est.motor_input);

	

	

Reflecting	on	the	project	structure
Now	that	we	have	developed	code	to	organize	and	connect	different	elevator
functions,	as	well	as	three	executables	to	simulate,	analyze,	and	operate	the
elevators,	let's	ask	ourselves	this—how	does	it	all	fit	together,	and	have	we	done
a	good	job	architecting	this	project	thus	far?

Reviewing	this	chapter,	we	can	quickly	see	that	we	have	made	use	of	four
different	code	organization	techniques.	At	a	more	casual	level,	the	code	seems	to
fall	into	categories,	as	follows:

Luggage:	Like	drivers	that	need	to	be	connected,	but	may	be	difficult	to
work	with
Nuts,	bolts,	and	gears:	Like	structs	and	traits,	we	have	a	lot	of	control	of
how	to	design
Deliverables:	Like	executables,	these	must	fulfill	a	specific	requirement

We	have	organized	all	deliverables	by	convenience;	all	luggage	by	type	or	by
purpose;	and	nuts,	bolts,	and	gears	have	been	organized	by	type,	by	purpose,	or
by	layer.	The	result	could	be	worse,	and	organizing	by	a	different	standard	does
not	imply	that	the	code	will	change	significantly.	Overall,	the	deliverables	are
supported	by	fairly	maintainable	code	and	the	project	is	going	in	a	good
direction.

	

	

	

Summary
In	this	chapter,	we	examined	four	code	organization	principles	that	can	be	used
alone	or	in	combination	to	develop	well-structured	projects.	The	four	principles
of	organization	by	type,	by	purpose,	by	layer,	and	by	convenience	are	helpful
perspectives	for	inspiring	good	architecture	choices	when	structuring	larger
projects.	The	larger	and	more	complex	a	project	becomes,	the	more	important
these	decisions	become,	though	simultaneously	more	difficult	to	change.

Applying	these	concepts,	we	restructured	the	entire	project	using	each	principle
to	a	varying	degree.	We	also	incorporated	significant	changes	to	allow
interfacing	with	external	libraries	and	applied	operations	of	the	elevator,	as
opposed	to	a	closed	simulation.	Now,	the	elevators	of	three	buildings	should	be
capable	of	running	entirely	on	the	software	developed	here.

In	the	next	chapter,	we	will	learn	about	mutability	and	ownership.	We	have
covered	these	concepts	to	a	certain	degree	already,	but	the	next	chapter	will
demand	a	much	more	in-depth	understanding	of	specific	details	and	limitations.

Questions
1.	 What	are	four	ways	of	grouping	code	into	modules?
2.	 What	does	FFI	stand	for?
3.	 Why	are	unsafe	blocks	necessary?
4.	 Is	it	ever	safe	to	use	unsafe	blocks?
5.	 What	is	the	difference	between	a	libc::c_int	and	an	int32?
6.	 Can	linked	libraries	define	functions	with	the	same	name?
7.	 What	type	of	files	can	be	linked	into	a	Rust	project?

	

	

Mutability,	Ownership,	and	Pure
Functions
Rust	has	introduced	some	new	concepts	of	its	own	with	respect	to	object
ownership.	These	safeguards	protect	the	developer	from	certain	classes	of	errors,
such	as	double	free	memory	or	hanging	pointers,	but	also	create	constraints	that
can	feel	unmerited	at	times.	Functional	programming	may	help	ease	some	of	this
conflict	by	encouraging	the	use	of	immutable	data	and	pure	functions.

In	this	chapter,	we	will	look	at	a	case	of	ownership	gone	wrong.	You	will	inherit
code	that	has	been	abandoned	as	being	too	difficult	to	work	with.	Your	job	in
this	chapter	will	be	to	address	the	problems	that	the	previous	team	were	unable
to	overcome.	To	achieve	this,	you	will	need	to	use	much	of	what	you	have
learned	so	far,	along	with	a	gained	understanding	of	the	specific	behaviors	and
constraints	of	ownership	in	Rust.

Learning	outcomes:

Recognizing	anti-patterns	of	complex	ownership
Learning	specific	rules	of	complex	ownership
Using	immutable	data	to	prevent	anti-patterns	of	ownership
Using	pure	functions	to	prevent	anti-patterns	of	ownership

	

	

Technical	requirements
A	recent	version	of	Rust	is	necessary	to	run	the	examples	provided:

https://www.rust-lang.org/en-US/install.html

This	chapter's	code	is	also	available	on	GitHub:

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Specific	installation	and	build	instructions	are	also	included	in	each	chapter's
README.md	file.

https://www.rust-lang.org/en-US/install.html
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Recognizing	anti-patterns	of
ownership
Consider	the	following	situation.

Congratulations,	you	have	inherited	legacy	code.	A	previous	team	responsible
for	developing	privileged	access	modules	for	elevators	has	been	moved	to	a
different	project.	They	successfully	developed	code	libraries	to	interface	with	a
range	of	microcontrollers.	However,	while	developing	the	access	logic	in	Rust,
they	found	object	ownership	to	be	very	complicated	and	were	unable	to	develop
software	that	was	compatible	with	Rust.

Your	task	in	this	chapter	will	be	to	analyze	their	code,	look	for	possible
solutions,	then	create	a	library	to	support	privileged	access	for	your	elevators.	To
clarify,	privileged	access	refers	to	override	codes	and	keys	made	available	to
emergency	services	such	as	police,	firemen,	and	so	on.

Inspecting	the	microcontroller	drivers
The	microcontroller	drivers	are	written	in	other	languages	and	exposed	to	Rust
through	the	foreign	function	interface	(FFI)	feature.	An	FFI	is	a	way	of
connecting	Rust	code	to	libraries	written	in	other	languages.	The	following	are
the	symbols	defined	in	the	foreign	library	and	bindings	in	src/magic.rs.

This	function	issues	an	override	code	to	the	library	and	subsystem,	as	follows:

fn	issue_override_code(code:	c_int)

When	an	override	code	is	entered,	it	will	be	exposed	through	this	function.	The
higher	layers	should	interpret	what	the	override	codes	mean	to	potentially	enter
emergency	operation	modes	or	other	maintenance	functions,	as	follows:	fn
poll_override_code()	->	c_int

When	an	override	mode	has	been	established	and	the	emergency	service	worker
enters	a	floor,	this	method	will	be	called.	Floor	requests	from	emergency	modes
should	take	precedence	over	normal	elevator	operation:	fn
poll_override_input_floor()

Error	codes	occurring	from	the	override	operation	will	be	exposed	through	this
function.	Issues	such	as	invalid	override	codes	will	be	presented	for	higher
layers	to	decide	how	to	respond:	fn	poll_override_error()	->	c_int

If	an	override	code	is	entered,	an	authorized	override	session	will	be	created:

fn	poll_override_session()	->	*const	c_void

After	an	override	session	is	complete,	it	should	be	freed	to	release	resources	and
reset	state:

fn	free_override_session(session:	*const	c_void)

If	a	physical	key	access	is	initiated	to	an	elevator,	then	this	method	will	expose
the	result:

fn	poll_physical_override_privileged_session()	->	*const	c_void

If	a	physical	key	access	is	initiated	by	an	administrator,	then	this	method	will
expose	the	result,	as	follows:

fn	poll_physical_override_admin_session()	->	*const	c_void

This	function	will	force	the	elevator	into	manual	operation	mode:

fn	override_manual_mode()

This	function	will	force	the	elevator	into	normal	operation	mode:

fn	override_normal_mode()

This	function	will	reset	the	elevator	state:

fn	override_reset_state()

This	function	will	perform	a	timed	flashing	pattern	of	lights	on	the	elevator
control	panel:

fn	elevator_display_flash(pattern:	c_int)

This	function	will	toggle	the	light	for	a	button	or	other	symbol	on	the	elevator
control	panel:

fn	elevator_display_toggle_light(light_id:	c_int)

This	function	will	alter	the	display	color	of	a	light	on	the	elevator	control	panel:

fn	elevator_display_set_light_color(light_id:	c_int,	color:	int)

Inspecting	the	type	and	trait
definitions
The	Rust	type	and	trait	definitions	left	behind	were	primarily	intended	to	wrap
the	library	interfaces.	Let's	look	quickly	through	the	symbols	defined	in
src/admin.rs	to	familiarize	ourselves	with	how	the	library	was	intended	to	work.

pub	enum	OverrideCode	{
	IssueOverride	=	1,
	IssuePrivileged	=	2,

	IssueAdmin	=	3,
	IssueInputFloor	=	4,
	IssueManualMode	=	5,

	IssueNormalMode	=	6,
	IssueFlash	=	7,
	IssueToggleLight	=	8,

	IssueSetLightColor	=	9,
}

pub	fn	toOverrideCode(i:	i32)	->
OverrideCode	{
	match	i	{
	1	=>	OverrideCode::IssueOverride,
	2
=>	OverrideCode::IssuePrivileged,
	3	=>	OverrideCode::IssueAdmin,

4	=>	OverrideCode::IssueInputFloor,
	5	=>
OverrideCode::IssueManualMode,
	6	=>	OverrideCode::IssueNormalMode,

	7	=>	OverrideCode::IssueFlash,
	8	=>
OverrideCode::IssueToggleLight,
	9	=>	OverrideCode::IssueSetLightColor,

	_	=>	panic!("Unexpected	override	code:	{}",	i)
	}
}

pub	enum	ErrorCode	{
	DoubleAuthorize	=	1,
	DoubleFree	=	2,

AccessDenied	=	3,
}

pub	fn	toErrorCode(i:	i32)	->	ErrorCode
{
	match	i	{
	1	=>	ErrorCode::DoubleAuthorize,
	2	=>
ErrorCode::DoubleFree,
	3	=>	ErrorCode::AccessDenied,
	_	=>	panic!
("Unexpected	error	code:	{}",	i)
	}
}

#[derive(Clone)]
pub	struct	AuthorizedSession
{
	session:	*const
c_void
}

impl	Drop	for	AuthorizedSession	{
	fn	drop(&mut
self)	{
	unsafe	{
	magic::free_override_session(self.session);
	}

	}
}

pub	fn	authorize_override()	->	Result<AuthorizedSession,ErrorCode>

{
	let	session	=	unsafe	{

magic::issue_override_code(OverrideCode::IssueOverride	as	i32);

magic::poll_override_session()
	};
	let	session	=	AuthorizedSession
{
	session:	session
	};
	check_error(session)
}

pub
fn	authorize_privileged()	->	Result<AuthorizedSession,ErrorCode>
{	...	}

pub	fn	authorize_admin()	->	Result<AuthorizedSession,ErrorCode>

{	...	}

pub	fn	reset_state()
{
	unsafe	{
	magic::override_reset_state();

	}
}

pub	fn	check_error<T>(t:	T)	->	Result<T,ErrorCode>

{
	let	err	=	unsafe	{
	magic::poll_override_error()
	};
	if
err==0	{
	Result::Ok(t)
	}	else	{
	Result::Err(toErrorCode(err))

	}
}

pub	fn	input_floor(floor:	i32)	->	Result<(),ErrorCode>
{
	unsafe
{
	magic::override_input_floor(floor);
	}
	check_error(())
}

pub	fn	manual_mode()	->	Result<(),ErrorCode>
{
	unsafe
{
	magic::override_manual_mode();
	}
	check_error(())
}

pub	fn	normal_mode()	->	Result<(),ErrorCode>
{
	unsafe
{
	magic::override_normal_mode();
	}
	check_error(())
}

pub	fn	flash(pattern:	i32)	->	Result<(),ErrorCode>
{
	unsafe	{

magic::elevator_display_flash(pattern);
	}
	check_error(())
}

pub	fn	toggle_light(light_id:	i32)	->	Result<(),ErrorCode>
{

unsafe	{
	magic::elevator_display_toggle_light(light_id);
	}

check_error(())
}

pub	fn	set_light_color(light_id:	i32,	color:	i32)
->	Result<(),ErrorCode>
{
	unsafe	{

magic::elevator_display_set_light_color(light_id,	color);
	}

check_error(())
}

pub	fn	is_override()	->	bool
{
	unsafe	{
	magic::is_override()	!=
0
	}
}

pub	fn	is_privileged()	->	bool
{
	unsafe
{
	magic::is_privileged()	!=	0
	}
}

pub	fn	is_admin()	->
bool
{
	unsafe	{
	magic::is_admin()	!=	0
	}
}

Inspecting	the	foreign	library	tests
The	previous	team	seemed	very	confident	in	the	library	subsystem	that	they
developed;	however,	they	found	Rust	code	difficult	to	work	with.	The	tests	make
this	problem	apparent.	Two	test	sets	seem	to	support	the	notion	that	the	library
works	as	intended,	but	the	Rust	components	fail	in	edge	cases.	It	will	be	your
responsibility	to	pick	up	the	pieces	and	salvage	the	project.

Looking	at	the	library	tests	in	src/tests/magic.rs,	the	intended	behavior	is	as
follows:

Override	codes	are	issued	to	the	subsystem	through	either	elevator	control
panel	or	from	the	software	directly
Status	information	and	authorization	sessions	are	accessed	through	the	poll
functions
Authorization	sessions	must	be	freed	before	others	can	authorize
In	override	mode,	privileged	commands	may	be	issued,	such	as:

Change	elevator	to	manual	operation
Use	elevator	display	panel	to	communicate

Privileged	commands	may	not	be	issued	without	an	active	session

All	library	tests	are	passing,	confirming	the	correct	behavior	of	the	library	under
the	limited	conditions	tested.	It	should	also	be	noted	that	the	library	is	a	bit
obtuse	in	how	it	handles	state,	events,	and	sessions.	These	patterns	are	common
in	linked	libraries,	but	to	see	the	pattern,	let's	look	at	the	resulting	code	in	Rust.

	

	

	

#[test]
fn	issue_override_code()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(1);
	assert!
(magic::poll_override_code()	==	1);
	assert!(magic::poll_override_error()
==	0);
	}
}

#[test]
fn	issue_privileged_code()	{

unsafe	{
	magic::override_reset_state();

magic::issue_override_code(2);
	assert!(magic::poll_override_code()	==	2);

	assert!(magic::poll_override_error()	==	0);
	}
}

#[test]

fn	issue_admin_code()	{
	unsafe	{
	magic::override_reset_state();

	magic::issue_override_code(3);
	assert!(magic::poll_override_code()
==	3);
	assert!(magic::poll_override_error()	==	0);
	}
}

#[test]
fn	authorize_override_success()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(1);
	let
session	=	magic::poll_override_session();
	assert!(session	!=	(0	as	*const
c_void));
	magic::free_override_session(session);
	assert!
(magic::poll_override_error()	==	0);
	}
}

#[test]
fn
authorize_privileged_success()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(2);
	let
session	=	magic::poll_physical_override_privileged_session();
	assert!
(session	!=	(0	as	*const	c_void));
	magic::free_override_session(session);

	assert!(magic::poll_override_error()	==	0);
	}
}

#[test]

fn	authorize_admin_success()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(3);
	let
session	=	magic::poll_physical_override_admin_session();
	assert!(session
!=	(0	as	*const	c_void));
	magic::free_override_session(session);

assert!(magic::poll_override_error()	==	0);
	}
}

#[test]
fn	double_override_failure()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(1);

magic::issue_override_code(1);
	assert!(magic::poll_override_session()	==
(0	as	*const	c_void));
	assert!(magic::poll_override_error()	==	1);
	}

}

#[test]
fn	double_privileged_failure()	{
	unsafe
{
	magic::override_reset_state();
	magic::issue_override_code(2);

magic::issue_override_code(2);
	assert!
(magic::poll_physical_override_privileged_session()	==	(0	as	*const	c_void));

	assert!(magic::poll_override_error()	==	1);
	}
}

#[test]

fn	double_admin_failure()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(3);

magic::issue_override_code(3);
	assert!
(magic::poll_physical_override_admin_session()	==	(0	as	*const	c_void));

assert!(magic::poll_override_error()	==	1);
	}
}

#[test]
fn	double_free_override_failure()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(1);
	let
session	=	magic::poll_override_session();
	assert!(session	!=	(0	as	*const
c_void));
	magic::free_override_session(session);

magic::free_override_session(session);
	assert!
(magic::poll_override_error()	==	2);
	}
}

#[test]
fn
double_free_privileged_failure()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(2);
	let
session	=	magic::poll_physical_override_privileged_session();
	assert!
(session	!=	(0	as	*const	c_void));
	magic::free_override_session(session);

	magic::free_override_session(session);
	assert!
(magic::poll_override_error()	==	2);
	}
}

#[test]
fn
double_free_admin_failure()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(3);
	let
session	=	magic::poll_physical_override_admin_session();
	assert!(session
!=	(0	as	*const	c_void));
	magic::free_override_session(session);

magic::free_override_session(session);
	assert!
(magic::poll_override_error()	==	2);
	}
}

#[test]
fn	flash()	{
	unsafe	{
	magic::override_reset_state();

magic::elevator_display_flash(222);
	assert!(magic::poll_override_code()
==	7);
	assert!(magic::poll_override_code()	==	222);
	}
}

#[test]
fn	toggle_light()	{
	unsafe	{

magic::override_reset_state();
	magic::elevator_display_toggle_light(33);

	assert!(magic::poll_override_code()	==	8);
	assert!
(magic::poll_override_code()	==	33);
	assert!(magic::poll_override_code()
==	1);
	magic::elevator_display_toggle_light(33);
	assert!
(magic::poll_override_code()	==	8);
	assert!(magic::poll_override_code()
==	33);
	assert!(magic::poll_override_code()	==	0);
	}
}

#[test]
fn	set_light_color()	{
	unsafe	{

magic::override_reset_state();
	magic::elevator_display_set_light_color(33,
222);
	assert!(magic::poll_override_code()	==	9);
	assert!
(magic::poll_override_code()	==	33);
	assert!(magic::poll_override_code()
==	222);
	}
}

#[test]
fn	input_floor()	{
	unsafe	{
	magic::override_reset_state();

	magic::issue_override_code(3);
	magic::override_input_floor(2);

	assert!(magic::poll_override_code()	==	4);
	assert!
(magic::poll_override_code()	==	2);
	assert!(magic::poll_override_error()
==	0);
	}
}

#[test]
fn	manual_mode()	{
	unsafe
{
	magic::override_reset_state();
	magic::issue_override_code(3);

magic::override_manual_mode();
	assert!(magic::poll_override_code()	==
5);
	assert!(magic::poll_override_error()	==	0);
	}
}

#
[test]
fn	normal_mode()	{
	unsafe	{

magic::override_reset_state();
	magic::issue_override_code(3);

magic::override_normal_mode();
	assert!(magic::poll_override_code()	==
6);
	assert!(magic::poll_override_error()	==	0);
	}
}

Denying	unauthorized	commands
Privileged	commands	will	be	denied	if	there	is	no	active	authorized	session:

#[test]

fn	deny_input_floor()	{

			unsafe	{

						magic::override_reset_state();

						magic::issue_override_code(4);

						magic::issue_override_code(2);

						assert!(magic::poll_override_error()	==	3);

			}

}

#[test]

fn	deny_manual_mode()	{

			unsafe	{

						magic::override_reset_state();

						magic::issue_override_code(5);

						assert!(magic::poll_override_error()	==	3);

			}

}

#[test]

fn	deny_normal_mode()	{

			unsafe	{

						magic::override_reset_state();

						magic::issue_override_code(6);

						assert!(magic::poll_override_error()	==	3);

			}

}

Inspecting	the	Rust	tests
These	tests	in	src/tests/admin.rs	cover	the	high-level	semantics	defined	in
src/admin.rs.	They	cover	mostly	the	same	test	cases	as	the	lower	level	tests;
however,	some	of	these	tests	fail.	To	salvage	the	library,	the	library	should	be
adjusted	so	that	these	tests	will	pass.

#[test]
fn	authorize_override()	{
	admin::reset_state();
	{
	let
session	=	admin::authorize_override().ok();
	assert!(admin::is_override());

	}
	assert!(!admin::is_override());
	assert!
(admin::check_error(()).is_ok());
}

#[test]
fn
authorize_privileged()	{
	admin::reset_state();
	{
	let	session	=
admin::authorize_privileged().ok();
	assert(admin::is_privileged());
	}

	assert!(!admin::is_privileged());
	assert!
(admin::check_error(()).is_ok());
}

#[test]
fn
issue_admin_code()	{
	admin::reset_state();
	{
	let	session	=
admin::authorize_admin().ok();
	assert(admin::is_admin());
	}

assert(!admin::is_admin());
	assert!(admin::check_error(()).is_ok());
}

#[test]
fn	clone_override()	{
	admin::reset_state();
	{
	let
session	=	admin::authorize_override().ok().unwrap();
	let	session2	=
session.clone();
	assert!(admin::is_override());
	}
	assert!
(!admin::is_override());
	assert!(admin::check_error(()).is_ok());
}

#[test]
fn	clone_privileged()	{
	admin::reset_state();

{
	let	session	=	admin::authorize_privileged().ok().unwrap();
	let
session2	=	session.clone();
	assert!(admin::is_privileged());
	}

assert!(!admin::is_privileged());
	assert!(admin::check_error(()).is_ok());

}

#[test]
fn	clone_admin()	{
	admin::reset_state();

	{
	let	session	=	admin::authorize_admin().ok().unwrap();
	let
session2	=	session.clone();
	assert!(admin::is_admin());
	}
	assert!
(!admin::is_admin());
	assert!(admin::check_error(()).is_ok());
}

#[test]
fn	input_floor()	{
	admin::reset_state();
	{
	let	session
=	admin::authorize_admin().ok();
	admin::input_floor(2).ok();
	}

assert!(!admin::is_admin());
	assert!(admin::check_error(()).is_ok());
}

#[test]
fn	manual_mode()	{
	admin::reset_state();

{
	let	session	=	admin::authorize_admin().ok();

admin::manual_mode().ok();
	}
	assert!(!admin::is_admin());

assert!(admin::check_error(()).is_ok());
}

#[test]
fn
normal_mode()	{
	admin::reset_state();
	{
	let	session	=
admin::authorize_admin().ok();
	admin::normal_mode().ok();
	}

assert!(!admin::is_admin());
	assert!(admin::check_error(()).is_ok());
}

Unprivileged	commands
Unprivileged	commands	should	be	allowed	regardless	of	authentication:

#[test]

fn	flash()	{

			admin::reset_state();

			assert!(!admin::is_override());

			assert!(!admin::is_privileged());

			assert!(!admin::is_admin());

			admin::flash(222).ok();

			assert!(admin::check_error(()).is_ok());

}

#[test]

fn	toggle_light()	{

			admin::reset_state();

			assert!(!admin::is_override());

			assert!(!admin::is_privileged());

			assert!(!admin::is_admin());

			admin::toggle_light(7).ok();

			assert!(admin::check_error(()).is_ok());

}

#[test]

fn	set_light_color()	{

			admin::reset_state();

			assert!(!admin::is_override());

			assert!(!admin::is_privileged());

			assert!(!admin::is_admin());

			admin::set_light_color(33,	123).ok();

			assert!(admin::check_error(()).is_ok());

}

Denying	access	to	privileged
commands
Privileged	commands	should	be	denied	if	there	is	no	authorized	active	session:

#[test]

fn	deny_input_floor()	{

			admin::reset_state();

			admin::input_floor(2).err();

			assert!(!admin::check_error(()).is_ok());

}

#[test]

fn	deny_manual_mode()	{

			admin::reset_state();

			admin::manual_mode().err();

			assert!(!admin::check_error(()).is_ok());

}

#[test]

fn	deny_normal_mode()	{

			admin::reset_state();

			admin::normal_mode().err();

			assert!(!admin::check_error(()).is_ok());

}

fn	main()
{
	//variable	x	has	not	yet	been	defined
	{
	let	x	=	5;

	//variable	x	is	now	defined	and	owned	by	this	context

	//variable
x	is	going	out	of	scope	and	will	be	dropped	here
	}
	//variable	x	has
gone	out	of	scope	and	is	no	longer	defined
}

We	have	brushed	against	the	first	two	rules	of	ownership	and	lifetimes	in
previous	chapters.	However,	this	is	the	first	chapter	in	which	we	have	needed	to
work	with	the	third	rule—drop.

When	the	owner	goes	out	of	scope,
the	value	will	be	dropped
In	the	preceding	code,	we	can	see	the	simple	case	where	a	function	block	is	an
owner.	When	the	function	block	exits,	the	variables	are	dropped.	Ownership	can
also	be	transferred,	so	when	a	value	is	sent	or	returned	to	another	block,	that
block	will	become	the	new	owner.	The	remaining	case	is	that	ownership	is
transferred	to	an	object.	When	a	value	is	dropped,	all	children	objects	are
automatically	dropped	as	well.

In	the	current	project,	there	are	three	tests	failing,	all	related	to	the	.clone	method
on	sessions.	The	failing	sessions	look	like	the	following:

#[test]

fn	clone_override()	{

			admin::reset_state();

			{

						let	session	=	admin::authorize_override().ok().unwrap();

						let	session2	=	session.clone();

						assert!(admin::is_override());

			}

			assert!(!admin::is_override());

			assert!(admin::check_error(()).is_ok());

}

Removing	the	boilerplate,	we	can	see	that	each	of	the	three	tests	follows	the
same	pattern:

1.	 Open	a	new	block
1.	 Authorize	a	new	session
2.	 Clone	the	new	session
3.	 Confirm	that	session	is	authorized

2.	 Close	the	block
3.	 Confirm	that	session	is	not	authorized
4.	 Confirm	that	no	errors	occurred

All	tests	work	correctly,	other	than	generating	errors	that	are	checked	at	the	end
of	the	test.	The	error	code	indicates	a	double	free	of	the	session.	By	normal	Rust
ownership	rules,	we	know	that	cloned	sessions	will	each	be	dropped

individually.	This	makes	sense	because	Drop	is	implemented	for	each	of	the	two
AuthorizedSession	structs	in	scope.	If	we	look	at	the	implementation	of	Drop	then	we
can	see	that	it	naively	just	calls	the	foreign	library,	which	will	cause	the	double
free	error:

#[derive(Clone)]

pub	struct	AuthorizedSession

{

			session:	*const	c_void

}

impl	Drop	for	AuthorizedSession	{

			fn	drop(&mut	self)	{

						unsafe	{

									magic::free_override_session(self.session);

						}

			}

}

Normally,	Rust	might	complain	about	this	careless	resource	management.
However,	the	library	uses	an	unsafe	block	to	wrap	the	calls	to	the	foreign
function.	Marking	code	as	unsafe	turns	off	many	safety	checks	and	encourages
the	compiler	to	trust	the	programmer.	Calling	foreign	libraries	is	inherently
unsafe,	so	this	unsafe	block	is	still	necessary.

The	correct	behavior	here	seems	to	be	to	free	the	session	only	once	after	all
cloned	sessions	have	been	dropped.	This	is	a	good	case	for	std::rc::Rc,	which
stands	for	reference	counted.

Rc	works	by	storing	one	owned	value	internal	to	itself.	All	owners	of	an	Rc	no
longer	hold	direct	ownership	over	the	inner	object	of	the	reference	counted
container.	To	use	the	inner	object,	the	borrower	must	ask	to	borrow	a	pointer	to
the	inner	object.	Ownership	of	Rc	objects	will	be	counted,	and	when	all
references	containing	a	given	value	are	gone,	the	value	will	be	dropped.

This	built-in	functionality	provides	exactly	what	we	want.	Clone	multiple	times,
drop	once,	as	follows:

struct	AuthorizedSessionInner(*const	c_void);

#[derive(Clone)]

pub	struct	AuthorizedSession

{

			session:	Rc<AuthorizedSessionInner>

}

impl	Drop	for	AuthorizedSessionInner	{

			fn	drop(&mut	self)	{

						unsafe	{

									magic::free_override_session(self.0);

						}

			}

}

To	initialize	sessions	from	raw	pointers,	we	need	to	wrap	them.	Otherwise,	no
code	needs	to	change:

let	session	=	AuthorizedSession	{

			session:	Rc::new(AuthorizedSessionInner(session))

};

After	these	small	changes,	the	three	remaining	tests	pass.	The	library	seems	to	be
working.	The	big	lesson	to	learn	here	is	that	Drop	implementations	can	be	very
sensitive	sometimes.	Don't	assume	that	multiple	drops	will	be	safe.	To	deal	with
complex	situations,	we	have	in	the	standard	library	the	types	std::rc::Rc	and
std::sync::Arc.	Arc	is	a	threadsafe	version	of	Rc.

Using	immutable	data
After	implementing	and	testing	the	library	with	real	elevators,	you	find	another
bug—when	someone	physically	keys	into	a	session,	sometimes	they	get
deauthorized	while	still	using	the	elevator.	Sometimes	is	a	terrible	word	to	hear
in	a	bug	report.

Fixing	the	hard-to-reproduce	bug
After	way	too	much	searching	and	researching,	you	find	a	test	case	that	reliably
reproduces	the	problem:

#[test]

fn	invalid_deauthorization()	{

			admin::reset_state();

			let	session	=	admin::authorize_admin().ok();

			assert!(admin::authorize_admin().is_err());

			assert!(admin::is_admin());

}

Looking	at	this	test	case,	the	first	thing	we	might	ask	is,	why	should	this	be
permitted?

The	problem	that	we	encountered	during	physical	testing	was	characterized	by
the	random	deauthorization	of	valid	sessions.	What	was	discovered	during
investigations	was	that	during	physically	authorized	sessions,	sometimes
software	authorized	sessions	would	be	initiated.	A	physical	authorization	is
when	someone	uses	a	key	on	the	elevator	to	use	special	commands.	Software
authorization	is	any	other	authorized	session	initiated	from	the	running	software,
rather	than	from	the	elevator	hardware.	This	double	authorization	action	violated
the	double	authorization	constraint,	so	both	sessions	were	invalidated.	The
resolution	is	clearly	to	permit	the	first	authorized	session	to	continue,	while
rejecting	the	second	authorization.

The	solution	seems	fairly	direct	and	straightforward.	From	src/admin.rs,	we	have
the	ability	to	check	whether	any	session	is	authorized	from	the	library,	then
reject	the	second	authorization	without	calling	the	library.

So,	rewriting	the	authorize	commands,	we	add	a	check	to	see	whether	there	is
already	an	authorized	session.	If	such	a	session	exists,	then	this	authorization
fails:

pub	fn	authorize_override()	->	Result<AuthorizedSession,ErrorCode>

{

			if	is_override()	||	is_privileged()	||	is_admin()	{

						return	Result::Err(ErrorCode::DoubleAuthorize)

			}

			let	session	=	unsafe	{

						magic::issue_override_code(OverrideCode::IssueOverride	as	i32);

						magic::poll_override_session()

			};

			let	session	=	AuthorizedSession	{

						session:	Rc::new(AuthorizedSessionInner(session))

			};

			check_error(session)

}

pub	fn	authorize_privileged()	->	Result<AuthorizedSession,ErrorCode>

{	...	}

pub	fn	authorize_admin()	->	Result<AuthorizedSession,ErrorCode>

{	...	}

This	change	fixes	the	immediate	problem,	but	causes	the	double	free	tests	to	fail,
because	now	there	is	no	error	code	generated	from	the	library	after	double	free.
We	are	essentially	protecting	the	underlying	library	from	double	free
responsibility,	so	this	is	a	foreseeable	consequence.	The	new	tests	just	remove
the	last	line	that	previously	checked	for	the	error	code:

#[test]

fn	double_override_failure()	{

			admin::reset_state();

			let	session	=	admin::authorize_override().ok();

			assert!(admin::authorize_override().err().is_some());

}

#[test]

fn	double_privileged_failure()	{

			admin::reset_state();

			let	session	=	admin::authorize_privileged().ok();

			assert!(admin::authorize_privileged().err().is_some());

}

#[test]

fn	double_admin_failure()	{

			admin::reset_state();

			let	session	=	admin::authorize_admin().ok();

			assert!(admin::authorize_admin().err().is_some());

}

Preventing	hard-to-reproduce	bugs
Rust	was	specifically	designed	to	avoid	hard-to-reproduce	bugs	like	this.	Raw
pointer	handling	is	prevented	or	strongly	discouraged	in	Rust.	A	raw	pointer	is
like	a	reference	that	Rust	knows	nothing	about,	and	therefore	can	provide	no
safety	guarantees	regarding	its	use.	Unfortunately,	this	bug	is	internal	to	a
foreign	library,	so	our	Rust	project	doesn't	have	jurisdiction	to	complain	about
the	root	problem	here.	Despite	this,	there	are	still	good	practices	that	we	can
follow	to	prevent	or	limit	the	occurrence	of	bugs	related	to	mutation	and	strange
side-effects.

The	first	technique	we	will	recommend	is	immutability.	By	default,	all	variables
are	declared	as	immutable.	This	is	Rust's	way	of	not	so	subtly	telling	you	to
avoid	mutating	values	if	possible,	as	follows:

fn	main()	{

			let	a	=	5;

			let	mut	b	=	5;

			//a	=	4;	not	valid

			b	=	4;

			//*(&mut	a)	=	3;	not	valid

			*(&mut	b)	=	3;

}

Immutable	values	cannot	be	borrowed	as	mutable	(by	design),	so	requiring
mutability	for	a	function	parameter	will	require	mutability	from	each	value	sent
to	it:

fn	f(x:	&mut	i32)	{

			*x	=	2;

}

fn	main()	{

			let	a	=	5;

			let	mut	b	=	5;

			//f(&mut	a);	not	valid

			f(&mut	b);

}

Turning	an	immutable	value	into	a	mutable	one	can	be	as	simple	as	cloning	it	to
create	a	new	identical	value;	however,	as	we	have	seen	throughout	this	chapter,

the	clone	is	not	always	a	simple	operation,	an	example	is	shown	as	follows:

use	std::sync::{Mutex,	Arc};

#[derive(Clone)]

struct	TimeBomb	{

			countdown:	Arc<Mutex<i32>>

}

impl	Drop	for	TimeBomb

{

			fn	drop(&mut	self)	{

						let	mut	c	=	self.countdown.lock().unwrap();

						*c	-=	1;

						if	*c	<=	0	{

									panic!("BOOM!!")

						}

			}

}

fn	main()

{

			let	t3	=	TimeBomb	{

						countdown:	Arc::new(Mutex::new(3))

			};

			let	t2	=	t3.clone();

			let	t1	=	t2.clone();

			let	t0	=	t1.clone();

}

Declaring	a	variable	as	immutable	does	not	absolutely	prevent	all	mutation,
inside	or	out.	In	Rust,	immutable	variables	are	permitted	to	hold	interior	fields
with	datatypes	that	are	mutable.	For	example,	std::cell::RefCell	can	be	used	to
achieve	interior	mutability	over	whatever	data	it	holds.

Despite	the	exceptions,	using	immutable	by	default	variables	can	help	prevent
simple	bugs	from	becoming	complex	bugs.	Don't	let	your	programming	style
become	a	liability;	practice	defensive	software	development.

Using	pure	functions
Pure	functions	are	the	second	technique	that	we	recommend	to	prevent	hard-to-
reproduce	bugs.	Pure	functions	can	be	thought	of	as	an	extension	of	the	avoid
side-effects	principle.	The	definition	of	a	pure	function	is	a	function	where	the
following	is	true:

No	changes	are	caused	outside	of	the	function	(no	side-effects)
The	return	value	does	not	depend	on	anything	but	the	function	parameters

Here	are	some	examples	of	pure	functions:

fn	p0()	{}

fn	p1()	->	u64	{

			444

}

fn	p2(x:	u64)	->	u64	{

			x	*	444

}

fn	p3(x:	u64,	y:	u64)	->	u64	{

			x	*	444	+	y

}

fn	main()

{

			p0();

			p1();

			p2(3);

			p3(3,4);

}

Here	are	some	examples	of	impure	functions:

use	std::cell::Cell;

static	mut	blah:	u64	=	3;

fn	ip0()	{

			unsafe	{

						blah	=	444;

			}

}

fn	ip1(c:	&Cell<u64>)	{

			c.set(333);

}

fn	main()

{

			ip0();

			let	r	=	Cell::new(3);

			ip1(&r);

			ip1(&r);

}

Rust	does	not	have	any	language	feature	that	specifically	designates	a	function
as	more	or	less	pure.	However,	as	the	preceding	examples	illustrate,	Rust
somewhat	discourages	impure	functions.	Function	purity	should	be	regarded	as	a
design	pattern	and	is	strongly	associated	with	the	good	functional	style.

Closures	can	also	be	pure	or	impure	in	the	same	fashion	as	top-level	functions.
As	such,	function	purity	becomes	a	concern	when	working	with	higher-level
functions.	Certain	patterns	of	functional	programming	expect	functions	to	be
pure.	A	good	example	is	the	memoization	pattern	that	we	briefly	mentioned	in	Ch
apter	1,	Functional	Programming	–	a	Comparison.	Let's	compare	what	can
happen	to	memoization	if	the	memoized	function	is	impure.

First,	here	is	a	reminder	of	how	memoization	is	supposed	to	work:

#[macro_use]	extern	crate	cached;

cached!{

			FIB;

			fn	fib(n:	u64)	->	u64	=	{

						if	n	==	0	||	n	==	1	{	return	n	}

						fib(n-1)	+	fib(n-2)

			}

}

fn	main()	{

			fib(30);	//call	1,	generates	correct	value	and	returns	it

			fib(30);	//call	2,	finds	correct	value	and	returns	it

}

Next,	let's	look	at	a	memoized	impure	function:

#[macro_use]	extern	crate	lazy_static;

#[macro_use]	extern	crate	cached;

use	std::collections::HashMap;

use	std::sync::Mutex;

lazy_static!	{

			static	ref	BUCKET_COUNTER:	Mutex<HashMap<u64,	u64>>	=	{

						Mutex::new(HashMap::new())

			};

}

cached!{

			BUCK;

			fn	bucket_count(n:	u64)	->	u64	=	{

						let	mut	counter	=	BUCKET_COUNTER.lock().unwrap();

						let	r	=	match	counter.get(&n)	{

									Some(c)	=>	{	c+1	}

									None	=>	{	1	}

						};

						counter.insert(n,	r);

						r

			}

}

fn	main()	{

			bucket_count(30);	//call	1,	generates	correct	value	and	returns	it

			bucket_count(30);	//call	2,	finds	stale	value	and	returns	it

}	

This	first	cache	example	should	return	the	same	value	every	time.	The	second
example	should	not	return	the	same	value	every	time.	Semantically,	we	don't
want	the	second	example	to	return	stale	values;	however,	this	also	means	that	we
cannot	safely	cache	the	results.	There	is	a	necessary	performance	trade-off.
There	is	nothing	wrong	with	the	purity	or	impurity	of	either	example	here	if	it	is
necessary.	It	just	means	that	the	second	example	should	not	be	cached.

However,	there	are	also	anti-patterns	of	impurity.	Let's	look	at	another	impure
function	that	behaves	poorly:

#[macro_use]	extern	crate	cached;

use	std::sync::{Arc,Mutex};

#[derive(Clone)]

pub	struct	TimeBomb	{

			countdown:	Arc<Mutex<i32>>

}

impl	Drop	for	TimeBomb

{

			fn	drop(&mut	self)	{

						let	mut	c	=	self.countdown.lock().unwrap();

						*c	-=	1;

						if	*c	<=	0	{

									panic!("BOOM!!")

						}

			}

}

cached!{

			TICKING_BOX;

			fn	tick_tock(v:	i32)	->	TimeBomb	=	{

						TimeBomb	{

									countdown:	Arc::new(Mutex::new(v))

						}

			}

}

fn	main()	{

			tick_tock(3);

			tick_tock(3);

			tick_tock(3);

}

In	this	example,	the	data	itself	is	impure.	Every	tick_tock	moves	and	drops	a
TimeBomb.	Eventually,	it	explodes	and	our	cache	doesn't	help	to	protect	us.
Hopefully,	you	won't	need	to	work	with	bombshells	in	your	programs.

Summary
In	this	chapter,	we	worked	with	legacy	code	and	foreign	libraries	in	Rust.	Rust
safeguards	can	be	annoying	to	learn	and	sometimes	burdensome	to	work	with,
but	the	alternative	of	fast	and	loose	coding	is	also	stressful	and	problematic.

One	of	the	motivations	for	Rust	memory	safety	rules	is	the	concept	of	double
free	memory,	which	we	mentioned	in	this	chapter.	However,	the	code	presented
did	not	involve	a	real	double	free	of	memory.	A	real	double	free	causes
something	known	as	undefined	behavior.	Undefined	behavior	is	a	term	used	in
language	standards	to	refer	to	operations	that	will	cause	the	program	to	act
strangely.	Double	freed	memory	is	typically	one	of	the	worst	types	of	undefined
behavior,	causing	memory	corruption	and	subsequent	crashes	or	invalid	states
that	are	hard	to	trace	back	to	the	original	cause.

In	the	latter	half	of	the	chapter,	we	examined	specific	Rust	design	decisions,
features,	and	patterns	such	as	ownership,	immutability,	and	pure	functions.
These	are	Rust's	defense	mechanisms	against	undefined	behavior	and	other	ills.

Using	Rust	safeguards	correctly	and	not	circumventing	them	has	many	benefits.
Rust	encourages	a	certain	style	of	programming	that	benefits	the	design	of	larger
projects.	Typically,	project	architecture	follows	a	more-than-linear
bug/complexity	curve.	As	a	project	grows	in	size,	the	number	of	bugs	and
difficult	situations	will	grow	at	an	even	faster	rate.	By	locking	down	common
sources	of	bugs	or	code	dependency,	it	is	possible	to	develop	large	projects	with
fewer	problems.

In	the	next	chapter,	we	will	formally	explain	many	functional	design	patterns.
This	will	be	a	good	opportunity	to	learn	the	extent	to	which	functional
programming	principles	apply	and	are	relevant	to	Rust.	If	nothing	in	the	next
chapter	seems	cool	or	useful,	then	the	author	has	failed.

Questions
1.	 What	does	Rc	stand	for?
2.	 What	does	Arc	stand	for?
3.	 What	is	a	weak	reference?
4.	 Which	superpowers	are	enabled	in	unsafe	blocks?
5.	 When	will	an	object	be	dropped?
6.	 What	is	the	difference	between	lifetimes	and	ownership?
7.	 How	can	you	be	sure	that	a	function	is	safe?
8.	 What	is	memory	corruption	and	how	would	it	affect	a	program?

	

	

Design	Patterns
Functional	programming	has	developed	design	patterns	just	like	object-oriented
or	other	communities.	These	patterns,	unsurprisingly,	make	use	of	functions	as	a
central	concept.	They	also	emphasize	something	called	the	single	responsibility
principle.	The	single	responsibility	principle	states	that	program's	logical
components	should	do	one	thing	and	do	that	one	thing	well.	In	this	chapter,	we
will	focus	on	a	few	very	common	patterns.	Some	of	these	concepts	are	so	simple
that	they	counter-intuitively	become	harder	to	explain.	In	these	cases,	we	will
make	use	of	various	examples	to	demonstrate	how	a	simple	concept	can	exhibit
complex	behavior.

In	this	chapter,	you	will	do	the	following:

Learn	to	recognize	and	use	functors
Learn	to	recognize	and	use	monads
Learn	to	recognize	and	use	combinators
Learn	to	recognize	and	use	lazy	evaluation

	

	

Technical	requirements
A	recent	version	of	Rust	is	necessary	to	run	the	examples	provided:

https://www.rust-lang.org/en-US/install.html

This	chapter's	code	is	also	available	on	GitHub:

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Specific	installation	and	build	instructions	are	also	included	in	each	chapter's
README.md	file.

https://www.rust-lang.org/en-US/install.html
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Using	the	functor	pattern
A	functor	is	approximately	the	inverse	of	a	function:

A	function	defines	a	transformation,	accepts	data,	and	returns	the	result	of
the	transformation
A	functor	defines	data,	accepts	a	function,	and	returns	the	result	of	the
transformation

A	simple	example	of	a	functor	is	the	Rust	vector	and	its	accompanying	map
function:	fn	main()	{
let	m:	Vec<u64>	=	vec![1,	2,	3];
let	n:	Vec<u64>	=	m.iter().map(|x|	{	x*x	}).collect();
println!("{:?}",	m);
println!("{:?}",	n);
}

Functors	are	often	thought	of	as	only	the	map	function,	due	to	the	rules	of	what
constitutes	a	functor	or	not.	The	preceding	common	case	is	what's	called	a
structure-preserving	map.	Functors	do	not	need	to	be	structure-preserving.	For
example,	take	the	very	similar	case	of	a	map	implemented	for	a	set,	as	shown	in
the	following	code:	use	std::collections::{HashSet};

fn	main()	{
let	mut	a:	HashSet<u64>	=	HashSet::new();
a.insert(1);
a.insert(2);
a.insert(3);
a.insert(4);
let	b:	HashSet<u64>	=	a.iter().cloned().map(|x|	x/2).collect();
println!("{:?}",	a);
println!("{:?}",	b);
}

We	see	here	that	the	resulting	set	is	smaller	than	the	original	set	due	to	collisions.
This	mapping	still	satisfies	the	properties	of	a	functor.	The	defining	properties	of

a	functor	are	as	follows:

A	collection	of	objects,	C
A	mapping	function	that	will	transform	objects	in	C	into	objects	in	D

The	preceding	Set	map	satisfies	both	the	first	and	second	property,	and	is
therefore	a	proper	functor.	It	also	demonstrates	how	data	can	be	transformed	into
a	differently	shaped	structure	through	a	functor.	Using	a	little	imagination,	we
may	also	consider	the	case	where	each	mapped	value	may	produce	multiple
outputs:	fn	main()	{
let	sentences	=	vec!["this	is	a	sentence","paragraphs	have	many	sentences"];
let	words:Vec<&str>	=	sentences.iter().flat_map(|&x|	x.split("	")).collect();
println!("{:?}",	sentences);
println!("{:?}",	words);
}

Technically	speaking,	this	last	case	is	not	a	normal	functor,	but	rather	a
contravariant	functor.	All	functors	are	covariant.	The	distinction	between
covariance	and	contravariance	is	not	important	for	our	purposes,	so	we	will
leave	that	topic	to	only	the	most	curious	readers.

As	a	final	definition	by	example,	we	should	note	that	the	input	and	output	of	a
functor	map	need	not	be	of	the	same	type.	For	example,	we	can	map	from	a
vector	to	a	HashSet:	use	std::collections::{HashSet};

fn	main()	{
let	v:	Vec<u64>	=	vec![1,	2,	3];
let	s:	HashSet<u64>	=	v.iter().cloned().map(|x|	x/2).collect();
println!("{:?}",	v);
println!("{:?}",	s);
}

To	give	a	non-trivial	example	of	how	the	functor	pattern	could	be	used,	let's	look
at	webcams	and	AI.	Modern	AI	facial	recognition	software	is	capable	of
identifying	human	faces	in	pictures	and	even	visible	emotional	states.	Let's
imagine	an	app	that	connects	to	a	webcam	and	processes	the	input	with	a	filter.
Here	are	some	type	definitions	for	the	program:	struct	WebCamera;

#[derive(Debug)]
enum	VisibleEmotion	{
Anger,
Contempt,
Disgust,
Fear,
Happiness,
Neutral,
Sadness,
Surprise
}

#[derive(Debug,Clone)]
struct	BoundingBox	{
top:	u64,
left:	u64,
height:	u64,
width:	u64
}

#[derive(Debug)]
enum	CameraFilters	{
Sparkles,
Rain,
Fire,
Disco
}

On	the	WebCamera	type,	we	will	implement	two	functors.	One	functor,	map_emotion,
will	map	emotions	to	other	emotions.	Maybe	this	could	be	used	to	add	emojis	to
the	text	chat.	The	second	contravariant	functor,	flatmap_emotion,	maps	emotions	to
zero,	or	more	filters.	These	are	animations	or	effects	that	can	be	applied	back
onto	the	web	camera	field	of	view:	impl	WebCamera	{
fn	map_emotion<T,F>(&self,	translate:	F)	->	Vec<(BoundingBox,T)>
where	F:	Fn(VisibleEmotion)	->	T	{
//Simulate	emotion	extracted	from	WebCamera

vec![
(BoundingBox	{	top:	1,	left:	1,	height:	1,	width:	1	},	VisibleEmotion::Anger),
(BoundingBox	{	top:	1,	left:	1,	height:	1,	width:	1	},	VisibleEmotion::Sadness),
(BoundingBox	{	top:	4,	left:	4,	height:	1,	width:	1	},	VisibleEmotion::Surprise),
(BoundingBox	{	top:	8,	left:	1,	height:	1,	width:	1	},	VisibleEmotion::Neutral)
].into_iter().map(|(bb,emt)|	{
(bb,	translate(emt))
}).collect::<Vec<(BoundingBox,T)>>()
}
fn	flatmap_emotion<T,F,U:IntoIterator<Item=T>>(&self,	mut	translate:	F)	->
Vec<(BoundingBox,T)>
where	F:	FnMut(VisibleEmotion)	->	U	{
//Simulate	emotion	extracted	from	WebCamera
vec![
(BoundingBox	{	top:	1,	left:	1,	height:	1,	width:	1	},	VisibleEmotion::Anger),
(BoundingBox	{	top:	1,	left:	1,	height:	1,	width:	1	},	VisibleEmotion::Sadness),
(BoundingBox	{	top:	4,	left:	4,	height:	1,	width:	1	},	VisibleEmotion::Surprise),
(BoundingBox	{	top:	8,	left:	1,	height:	1,	width:	1	},	VisibleEmotion::Neutral)
].into_iter().flat_map(|(bb,emt)|	{
translate(emt).into_iter().map(move	|t|	(bb.clone(),	t))
}).collect::<Vec<(BoundingBox,T)>>()
}
}

To	use	the	functors,	the	programmer	supplies	which	emotions	map	to	which
filters.	The	complex	AI	and	effects	can	be	easily	modified	due	to	the
encapsulation	provided	by	the	functor	pattern:	fn	main()	{
let	camera	=	WebCamera;
let	emotes:	Vec<(BoundingBox,VisibleEmotion)>	=	camera.map_emotion(|emt|
{
match	emt	{
VisibleEmotion::Anger	|
VisibleEmotion::Contempt	|
VisibleEmotion::Disgust	|
VisibleEmotion::Fear	|
VisibleEmotion::Sadness	=>	VisibleEmotion::Happiness,
VisibleEmotion::Neutral	|

VisibleEmotion::Happiness	|
VisibleEmotion::Surprise	=>	VisibleEmotion::Sadness
}
});

let	filters:	Vec<(BoundingBox,CameraFilters)>	=	camera.flatmap_emotion(|emt|
{
match	emt	{
VisibleEmotion::Anger	|
VisibleEmotion::Contempt	|
VisibleEmotion::Disgust	|
VisibleEmotion::Fear	|
VisibleEmotion::Sadness	=>	vec![CameraFilters::Sparkles,
CameraFilters::Rain],
VisibleEmotion::Neutral	|
VisibleEmotion::Happiness	|
VisibleEmotion::Surprise	=>	vec![CameraFilters::Disco]
}
});

println!("{:?}",emotes);
println!("{:?}",filters);
}

Using	the	monad	pattern
A	monad	defines	return	and	bind	operations	for	a	type.	The	return	operation	is	like
a	constructor	to	make	the	monad.	The	bind	operation	incorporates	new
information	and	returns	a	new	monad.	There	are	also	several	laws	that	monads
should	obey.	Rather	than	quote	the	laws,	we'll	just	say	that	monads	should
behave	well	when	daisy	chained	like	the	following:	MyMonad::return(value)
//We	start	with	a	new	MyMonad<A>
.bind(|x|	x+x)	//We	take	a	step	into	MyMonad
.bind(|y|	y*y);	//Similarly	we	get	to	MyMonad<C>

In	Rust,	there	are	several	semi-monads	that	appear	in	standard	libraries:	fn
main()
{
let	v1	=	Some(2).and_then(|x|	Some(x+x)).and_then(|y|	Some(y*y));
println!("{:?}",	v1);

let	v2	=	None.or_else(||	None).or_else(||	Some(222));
println!("{:?}",	v2);
}

In	this	example,	the	normal	Option	constructors,	Some	or	None,	take	the	place	of	the
monadic	naming	convention,	return.	There	are	two	semi-monads	implemented
here,	one	associated	with	and_then,	and	the	other	with	or_else.	Both	of	these
correspond	to	the	monadic	bind	naming	convention	for	the	operator	responsible
for	incorporating	new	information	into	a	new	monad	return	value.

Monadic	bind	operations	are	also	polymorphic,	meaning	they	should	permit
returning	monads	of	different	types	from	the	current	monad.	According	to	this
rule,	or_else	is	not	technically	a	monad;	hence	it	is	a	semi-monad:	fn	main()	{
let	v3	=	Some(2).and_then(|x|	Some("abc"));
println!("{:?}",	v3);

//	or_else	is	not	quite	a	monad
//	does	not	permit	polymorphic	bind

//let	v4	=	Some(2).or_else(||	Some("abc"));
//println!("{:?}",	v4);
}

Monads	were	originally	developed	to	express	side-effects	in	purely	functional
languages.	Isn't	that	a	contradiction—pure	with	side-effects?

The	answer	is	no	if	the	effects	are	passed	as	input	and	output	through	pure
functions.	However,	for	this	to	work,	every	function	would	need	to	declare	every
state	variable	and	pass	it	along,	which	could	become	a	huge	list	of	parameters.
This	is	where	monads	come	in.	A	monad	can	hide	state	inside	itself,	which
becomes	essentially	a	larger,	more	complex	function	than	what	the	programmer
interacts	with.

One	concrete	example	of	side-effect	hiding	is	the	concept	of	a	universal	logger.
The	monadic	return	and	bind	can	be	used	to	wrap	state	and	computation	inside	of
a	monad	that	will	log	all	intermediate	results.	Here	is	the	logger	monad:	use
std::fmt::{Debug};

struct	LogMonad<T>(T);
impl<T>	LogMonad<T>	{
fn	_return(t:	T)	->	LogMonad<T>
where	T:	Debug	{
println!("{:?}",	t);
LogMonad(t)
}
fn	bind<R,F>(&self,	f:	F)	->	LogMonad<R>
where	F:	FnOnce(&T)	->	R,
R:	Debug	{
let	r	=	f(&self.0);
println!("{:?}",	r);
LogMonad(r)
}
}

fn	main()	{
LogMonad::_return(4)
.bind(|x|	x+x)

.bind(|y|	y*y)

.bind(|z|	format!("{}{}{}",	z,	z,	z));
}

As	long	as	each	result	implements	the	Debug	trait,	it	can	be	automatically	logged
with	this	pattern.

The	monad	pattern	is	also	very	useful	for	chaining	together	code	that	can't	be
written	in	a	normal	code	block.	For	example,	code	blocks	are	always	evaluated
eagerly.	If	you	want	to	define	code	that	will	be	evaluated	later	or	in	pieces,	the
lazy	monad	pattern	is	very	convenient.	Lazy	evaluation	is	a	term	used	to
describe	code	or	data	that	is	not	evaluated	until	it	is	referenced.	This	is	contrary
to	the	typical	eager	evaluation	of	Rust	code	that	will	execute	immediately
regardless	of	context.	Here	is	the	lazy	monad	pattern:	struct	LazyMonad<A,B>
(Box<Fn(A)	->	B>);

impl<A:	'static,B:	'static>	LazyMonad<A,B>	{
fn	_return(u:	A)	->	LazyMonad<B,B>	{
LazyMonad(Box::new(move	|b:	B|	b))
}
fn	bind<C,G:	'static>(self,	g:	G)	->	LazyMonad<A,C>
where	G:	Fn(B)	->	C	{
LazyMonad(Box::new(move	|a:	A|	g(self.0(a))))
}
fn	apply(self,	a:	A)	->	B	{
self.0(a)
}
}

fn	main()	{
let	notyet	=	LazyMonad::_return(())	//we	create	LazyMonad<()>
.bind(|x|	x+2)	//and	now	a	LazyMonad<A>
.bind(|y|	y*3)	//and	now	a	LazyMonad
.bind(|z|	format!("{}{}",	z,	z));

let	nowdoit	=	notyet.apply(222);	//The	above	code	now	run
println!("nowdoit	{}",	nowdoit);

}

This	block	defines	statements	that	will	be	evaluated	one	at	a	time	after	a	value	is
supplied,	but	not	before.	This	may	seem	a	bit	trivial	since	we	can	do	the	same
with	a	simple	closure	and	code	block;	however,	to	make	this	pattern	stick,	let's
consider	a	more	complex	case—an	asynchronous	web	server.

A	web	server	will	typically	receive	a	full	HTTP	request	before	processing	it.
Choosing	what	to	do	with	a	request	is	sometimes	called	routing.	Then	requests
are	sent	to	a	request	handler.	In	the	following	code,	we	define	a	server	that	helps
us	wrap	routes	and	handlers	into	a	single	web	server	object.	Here	are	the	type
and	method	definitions:	use	std::io::prelude::*;
use	std::net::TcpListener;
use	std::net::TcpStream;

struct	ServerMonad<St>	{
state:	St,
handlers:	Vec<Box<Fn(&mut	St,&String)	->	Option<String>>>
}

impl<St:	Clone>	ServerMonad<St>	{
fn	_return(st:	St)	->	ServerMonad<St>	{
ServerMonad	{
state:	st,
handlers:	Vec::new()
}
}
fn	listen(&mut	self,	address:	&str)	{
let	listener	=	TcpListener::bind(address).unwrap();
for	stream	in	listener.incoming()	{
let	mut	st	=	self.state.clone();
let	mut	buffer	=	[0;	2048];
let	mut	tcp	=	stream.unwrap();
tcp.read(&mut	buffer);
let	buffer	=	String::from_utf8_lossy(&buffer).into_owned();
for	h	in	self.handlers.iter()	{
if	let	Some(response)	=	h(&mut	st,&buffer)	{

tcp.write(response.as_bytes());
break
}
}
}
}
fn	bind_handler<F>(mut	self,	f:	F)	->	Self
where	F:	'static	+	Fn(&mut	St,&String)	->	Option<String>	{
self.handlers.push(Box::new(f));
self
}
}

This	type	defines	return	and	bind	like	operations.	However,	the	bind	function	is	not
polymorphic	and	the	operation	is	not	a	pure	function.	Without	these
compromises,	we	would	need	to	fight	against	the	Rust	type	and	ownership
system;	the	preceding	example	is	not	written	monadically	due	to	complications
when	trying	to	box	and	copy	closures.	This	is	an	expected	trade-off	and	the
semi-monad	pattern	should	not	be	discouraged	when	appropriate.

To	define	our	web	server	responses,	we	can	attach	handlers	like	in	the	following
code:	fn	main()	{
ServerMonad::_return(())
.bind_handler(|&mut	st,	ref	msg|	if	msg.len()%2	==	0	{	Some("divisible	by
2".to_string())	}	else	{	None	})
.bind_handler(|&mut	st,	ref	msg|	if	msg.len()%3	==	0	{	Some("divisible	by
3".to_string())	}	else	{	None	})
.bind_handler(|&mut	st,	ref	msg|	if	msg.len()%5	==	0	{	Some("divisible	by
5".to_string())	}	else	{	None	})
.bind_handler(|&mut	st,	ref	msg|	if	msg.len()%7	==	0	{	Some("divisible	by
7".to_string())	}	else	{	None	})
.listen("127.0.0.1:8888");
}

If	you	run	this	program	and	send	messages	to	localhost	8888,	then	you	may	get	a
response	if	the	message	length	is	divisible	by	2,	3,	5,	or	7.

Using	the	combinator	pattern
A	combinator	is	a	function	that	takes	other	functions	as	arguments	and	returns	a
new	function.

A	simple	example	of	a	combinator	would	be	the	composition	operator,	which
chains	two	functions	together:

fn	compose<A,B,C,F,G>(f:	F,	g:	G)	->	impl	Fn(A)	->	C

			where	F:	'static	+	Fn(A)	->	B,

									G:	'static	+	Fn(B)	->	C	{

			move	|x|	g(f(x))

}

fn	main()	{

			let	fa	=	|x|	x+1;

			let	fb	=	|y|	y*2;

			let	fc	=	|z|	z/3;

			let	g	=	compose(compose(fa,fb),fc);

			println!("g(1)	=	{}",	g(1));

			println!("g(12)	=	{}",	g(12));

			println!("g(123)	=	{}",	g(123));

}

	

	

Parser	combinators
Another	major	application	of	combinators	is	parser	combinators.	A	parser
combinator	makes	use	of	both	the	monad	and	combinator	patterns.	The	monadic
bind	functions	are	used	to	bind	data	from	parsers	that	are	later	returned	as	a	parse
result.	The	combinators	join	parsers	into	a	sequence,	failover,	or	other	patterns.

The	chomp	parser	combinator	library	is	a	good	implementation	of	this	concept.
Also,	the	library	provides	a	nice	parse!	macro	that	makes	the	combinator	logic
much	easier	to	read.	Here	is	an	example:	#[macro_use]
extern	crate	chomp;
use	chomp::prelude::*;

#[derive(Debug,	Eq,	PartialEq)]
struct	Name<B:	Buffer>	{
first:	B,
last:	B,
}

fn	name<I:	U8Input>(i:	I)	->	SimpleResult<I,	Name<I::Buffer>>	{
parse!{i;
let	first	=	take_while1(|c|	c	!=	b'	');
token(b'	');	//	skipping	this	char
let	last	=	take_while1(|c|	c	!=	b'\n');

ret	Name{
first:	first,
last:	last,
}
}
}

fn	main()	{
let	parse_result	=	parse_only(name,	"Martin	Wernstål\n".as_bytes()).unwrap();
println!("first:{}	last:{}",

						String::from_utf8_lossy(parse_result.first),

						String::from_utf8_lossy(parse_result.last));

}

Here,	the	example	defines	a	grammar	for	a	first	name,	last	name	parser.	In	the
name	function,	the	parser	is	defined	with	a	macro.	The	inside	of	the	macro	looks
almost	like	a	normal	code,	like	the	let	statements,	function	calls,	and	closure
definitions.	However,	the	generated	code	is	actually	a	mix	of	monads	and
combinators.

Each	let	binding	corresponds	to	a	combinator.	Each	semicolon	corresponds	to	a
combinator.	The	functions	take_while1	and	token	are	both	combinators	that
introduce	parser	monads.	Then,	when	the	macro	ends,	we	are	left	with	an
expression	that	processes	the	input	to	parse	a	result.

This	chomp	parser	combinator	library	is	fully	featured	and	may	be	hard	to
understand	if	you	just	casually	examined	the	source	code.	To	see	what	is
happening	here,	let's	create	our	own	parser	combinators.	First,	let's	define	the
parser	state:	use	std::rc::Rc;

#[derive(Clone)]
struct	ParseState<A:	Clone>	{
buffer:	Rc<Vec<char>>,
index:	usize,
a:	A
}

impl<A:	Clone>	ParseState<A>	{
fn	new(a:	A,	buffer:	String)	->	ParseState<A>	{
let	buffer:	Vec<char>	=	buffer.chars().collect();
ParseState	{
buffer:	Rc::new(buffer),
index:	0,
a:	a
}
}
fn	next(&self)	->	(ParseState<A>,Option<char>)	{
if	self.index	<	self.buffer.len()	{
let	new_char	=	self.buffer[self.index];

let	new_index	=	self.index	+	1;
(ParseState	{
buffer:	Arc::clone(&self.buffer),
index:	new_index,
a:	self.a.clone()
},	Some(new_char))
}	else	{
(ParseState	{
buffer:	Rc::clone(&self.buffer),
index:	self.index,
a:	self.a.clone()
},None)
}
}
}

#[derive(Debug)]
struct	ParseRCon<A,B>(A,Result<Option,String>);

#[derive(Debug)]
enum	ParseOutput<A>	{
Success(A),
Failure(String)
}

Here	we	define	ParseState,	ParseRCon,	and	ParseResult.	The	parse	state	keeps	track	of
what	character	index	the	parser	is	at.	The	parse	state	often	also	records
information,	such	as	the	line	and	column	number.

The	ParseRCon	structure	encapsulates	state	along	with	an	optional	value	wrapped
in	a	result.	If	an	unrecoverable	error	happens	while	parsing,	the	result	will
become	Err.	If	a	recoverable	error	happens	while	parsing,	the	option	will	be	None.
Otherwise,	the	parsers	should	work	mostly	as	if	they	expect	to	always	have	the
optional	value.

The	ParseResult	type	is	returned	at	the	very	end	of	a	parse	execution	to	provide	a
successful	result	or	error	message.

The	parser	monads	and	combinators	are	defined	ad	hoc	with	different	functions.
To	create	a	parser,	the	simplest	options	would	be	parse_mzero	and	parse_return:	fn
parse<St:	Clone,A,P>(p:	&P,	st:	&ParseState<St>)	->	ParseOutput<A>
where	P:	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,A>	{
match	p(st.clone())	{
ParseRCon(_,Ok(Some(a)))	=>	ParseOutput::Success(a),
ParseRCon(_,Ok(None))	=>	ParseOutput::Failure("expected	input".to_string()),
ParseRCon(_,Err(err))	=>	ParseOutput::Failure(err)
}
}

fn	parse_mzero<St:	Clone,A>(st:	ParseState<St>)	->
ParseRCon<ParseState<St>,A>	{
ParseRCon(st,Err("mzero	failed".to_string()))
}

fn	parse_return<St:	Clone,A:	Clone>(a:	A)	->	impl	(Fn(ParseState<St>)	->
ParseRCon<ParseState<St>,A>)	{
move	|st|	{	ParseRCon(st,Ok(Some(a.clone())))	}
}

fn	main()	{
let	input1	=	ParseState::new((),	"1	+	2	*	3".to_string());
let	input2	=	ParseState::new((),	"3	/	2	-	1".to_string());

let	p1	=	parse_mzero::<(),()>;
println!("p1	input1:	{:?}",	parse(&p1,&input1));
println!("p1	input2:	{:?}",	parse(&p1,&input2));

let	p2	=	parse_return(123);
println!("p2	input1:	{:?}",	parse(&p2,&input1));
println!("p2	input2:	{:?}",	parse(&p2,&input2));
}

The	parse_mzero	monad	always	fails	and	returns	a	simple	message.	The	parse_return
always	succeeds	and	returns	a	given	value.

To	make	things	more	interesting,	let's	actually	look	at	a	parser	that	consumes
input.	We	create	the	following	two	functions—parse_token	and	parse_satisfy.
parse_token	will	always	consume	one	token	and	return	its	value	unless	there	is	no
more	input.	parse_satisfy	will	consume	a	token	if	the	token	satisfies	some
condition.	Here	are	the	definitions:	fn	parse_token<St:	Clone,A,T>(t:	T)	->	impl
(Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,A>)
where	T:	'static	+	Fn(char)	->	Option<A>	{
move	|st:	ParseState<St>|	{
let	(next_state,next_char)	=	st.clone().next();
match	next_char	{
Some(c)	=>	ParseRCon(next_state,Ok(t(c))),
None	=>	ParseRCon(st,Err("end	of	input".to_string()))
}
}
}

fn	parse_satisfy<St:	Clone,T>(t:	T)	->	impl	(Fn(ParseState<St>)	->
ParseRCon<ParseState<St>,char>)
where	T:	'static	+	Fn(char)	->	bool	{
parse_token(move	|c|	if	t(c)	{Some(c)}	else	{None})
}

fn	main()	{
let	input1	=	ParseState::new((),	"1	+	2	*	3".to_string());
let	input2	=	ParseState::new((),	"3	/	2	-	1".to_string());

let	p3	=	parse_satisfy(|c|	c=='1');
println!("p3	input1:	{:?}",	parse(&p3,&input1));
println!("p3	input2:	{:?}",	parse(&p3,&input2));

let	digit	=	parse_satisfy(|c|	c.is_digit(10));
println!("digit	input1:	{:?}",	parse(&digit,&input1));
println!("digit	input2:	{:?}",	parse(&digit,&input2));

let	space	=	parse_satisfy(|c|	c=='	');
println!("space	input1:	{:?}",	parse(&space,&input1));
println!("space	input2:	{:?}",	parse(&space,&input2));

let	operator	=	parse_satisfy(|c|	c=='+'	||	c=='-'	||	c=='*'	||	c=='/');
println!("operator	input1:	{:?}",	parse(&operator,&input1));
println!("operator	input2:	{:?}",	parse(&operator,&input2));
}

The	parse_token	and	parse_satisfy	look	at	one	token.	If	the	token	satisfies	the
provided	condition,	it	then	returns	the	input	token.	Here,	we	create	several
conditions	to	correspond	to	single	character	matching,	digits,	spaces,	or
arithmetic	operators.

These	functions	can	be	composed	using	high-level	combinators	to	create
complex	grammar:	fn	parse_bind<St:	Clone,A,B,P1,P2,B1>(p1:	P1,	b1:	B1)
->	impl	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,B>
where	P1:	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,A>,
P2:	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,B>,
B1:	Fn(A)	->	P2	{
move	|st|	{
match	p1(st)	{
ParseRCon(nst,Ok(Some(a)))	=>	b1(a)(nst),
ParseRCon(nst,Ok(None))	=>	ParseRCon(nst,Err("bind	failed".to_string())),
ParseRCon(nst,Err(err))	=>	ParseRCon(nst,Err(err))
}
}
}

fn	parse_sequence<St:	Clone,A,B,P1,P2>(p1:	P1,	p2:	P2)
->	impl	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,B>
where	P1:	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,A>,
P2:	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,B>	{
move	|st|	{
match	p1(st)	{
ParseRCon(nst,Ok(_))	=>	p2(nst),
ParseRCon(nst,Err(err))	=>	ParseRCon(nst,Err(err))
}
}
}

fn	parse_or<St:	Clone,A,P1,P2>(p1:	P1,	p2:	P2)
->	impl	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,A>
where	P1:	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,A>,
P2:	Fn(ParseState<St>)	->	ParseRCon<ParseState<St>,A>	{
move	|st|	{
match	p1(st.clone())	{
ParseRCon(nst,Ok(Some(a)))	=>	ParseRCon(nst,Ok(Some(a))),
ParseRCon(_,Ok(None))	=>	p2(st),
ParseRCon(nst,Err(err))	=>	ParseRCon(nst,Err(err))
}
}
}

fn	main()	{
let	input1	=	ParseState::new((),	"1	+	2	*	3".to_string());
let	input2	=	ParseState::new((),	"3	/	2	-	1".to_string());

let	digit	=	parse_satisfy(|c|	c.is_digit(10));
let	space	=	parse_satisfy(|c|	c=='	');
let	operator	=	parse_satisfy(|c|	c=='+'	||	c=='-'	||	c=='*'	||	c=='/');
let	ps1	=	parse_sequence(digit,space);
let	ps2	=	parse_sequence(ps1,operator);
println!("digit,space,operator	input1:	{:?}",	parse(&ps2,&input1));
println!("digit,space,operator	input2:	{:?}",	parse(&ps2,&input2));
}

Here,	we	see	how	the	monadic	parse_bind	or	its	derivative,	parse_sequence,	can	be
used	to	sequence	two	parsers	together.	We	don't	have	an	example	here	but	the
failover	combinator	is	also	defined	in	parse_or.

Using	these	primitives,	we	can	create	nice	tools	to	help	us	generate	complex
parsers	that	expect,	store,	and	manipulate	data	from	token	streams.	Parse
combinators	are	one	of	the	more	practical	yet	challenging	applications	of
monads	and	combinators.	The	fact	that	these	concepts	are	at	all	possible	in	Rust
demonstrates	how	far	the	language	has	developed	towards	supporting	functional
concepts.

Using	the	lazy	evaluation	pattern
Lazy	evaluation	is	procrastination,	doing	work	later	rather	than	now.	Why	is	this
important?	Well,	it	turns	out	if	you	procrastinate	long	enough,	sometimes	it	turns
out	that	the	work	never	needed	to	be	done	after	all!

Take,	for	example,	a	simple	expression	evaluation:	fn	main()
{
2	+	3;

||	2	+	3;
}

In	a	strict	interpretation,	the	first	expression	will	perform	an	arithmetic
calculation.	The	second	expression	will	define	an	arithmetic	calculation	but	will
wait	before	evaluating	it.

This	case	is	so	simple	that	the	compiler	gives	a	warning	and	might	choose	to
discard	the	unused	constant	expression.	In	more	complicated	cases,	the	lazy
evaluated	case	will	always	perform	better	when	not	evaluated.	This	should	be
expected	because	unused	lazy	expressions	do	nothing,	intentionally.

Iterators	are	lazy.	They	don't	do	anything	until	you	collect	or	otherwise	iterate
over	them:	fn	main()	{
let	a	=	(0..10).map(|x|	x	*	x);
//nothing	yet

for	x	in	a	{
println!("{}",	x);

			}

			//now	it	ran

}

Another	data	structure	that	intentionally	uses	lazy	evaluation	is	the	lazy	list.	A
lazy	list	is	very	similar	to	an	iterator	with	the	exception	that	lazy	lists	can	be
shared	and	consumed	at	different	paces	independently.

In	the	parser	combinator	example,	we	hid	a	lazy	list	inside	of	the	parser	state
structure.	Let's	isolate	that	and	see	what	a	pure	definition	looks	like:	use
std::rc::Rc;

#[derive(Clone)]
struct	LazyList<A:	Clone>	{
buffer:	Rc<Vec<A>>,
index:	usize
}

impl<A:	Clone>	LazyList<A>	{
fn	new(buf:	Vec<A>)	->	LazyList<A>	{
LazyList	{
buffer:	Rc::new(buf),
index:	0
}
}
fn	next(&self)	->	Option<(LazyList<A>,A)>	{
if	self.index	<	self.buffer.len()	{
let	new_item	=	self.buffer[self.index].clone();
let	new_index	=	self.index	+	1;
Some((LazyList	{
buffer:	Rc::clone(&self.buffer),
index:	new_index
},new_item))
}	else	{
None
}
}
}

fn	main()
{
let	ll	=	LazyList::new(vec![1,2,3]);
let	(ll1,a1)	=	ll.next().expect("expect	1	item");
println!("lazy	item	1:	{}",	a1);

let	(ll2,a2)	=	ll1.next().expect("expect	2	item");
println!("lazy	item	2:	{}",	a2);

let	(ll3,a3)	=	ll2.next().expect("expect	3	item");
println!("lazy	item	3:	{}",	a3);

let	(ll2,a2)	=	ll1.next().expect("expect	2	item");
println!("lazy	item	2:	{}",	a2);
}

Here,	we	can	see	that	a	lazy	list	is	much	like	an	iterator.	In	fact,	a	lazy	list	could
implement	the	Iterator	trait;	then	it	really	would	be	an	iterator.	However,	iterators
are	not	lazy	lists.	Lazy	lists	inherently	have	an	unlimited	capacity	to	look	ahead
to	any	number	of	items.	Iterators,	on	the	other	hand,	optionally,	may	implement
the	Peekable	trait	permitting	one	look	ahead.

There	is	a	fundamental	problem	at	the	core	of	lazy	programming,	though.	Too
much	procrastination	will	never	complete	any	task.	If	you	write	a	program	to
launch	missiles,	at	some	point	in	the	program,	it	needs	to	actually	launch
missiles.	This	is	an	irreversible	side-effect	of	running	the	program.	We	don't	like
side-effects,	and	lazy	programming	takes	an	extreme	stance	against	side-	effects.
At	the	same	time,	we	need	to	accomplish	the	given	task	though,	and	that
involves	making	a	choice	at	some	point	to	push	the	launch	button.

Clearly,	we	can	never	fully	contain	the	behavior	of	programs	with	side-effects.
However,	we	can	make	them	easier	to	work	with.	By	wrapping	side-effects	into
lazy	evaluated	expressions,	then	turning	them	into	monads,	what	we	create	are
side-effect	units.	These	units	can	then	be	manipulated	and	composed	in	a	more
functional	style.

The	last	lazy	pattern	that	we	will	introduce	is	functional	reactive
programming,	FRP	for	short.	There	are	entire	programming	languages,	such	as
Elm,	based	on	this	concept.	Popular	web	UI	frameworks,	such	as	React	or
Angular,	are	also	influenced	by	FRP	concepts.

The	FRP	concept	is	an	extension	of	the	side-effect/state	monad	example.	Event
handling,	state	transitions,	and	side-effects	can	be	turned	into	units	of	reactive
programming.	Let's	define	a	monad	to	capture	this	reactive	unit	concept:	struct

ReactiveUnit<St,A,B>	{
state:	Arc<Mutex<St>>,
event_handler:	Arc<Fn(&mut	St,A)	->	B>
}

impl<St:	'static,A:	'static,B:	'static>	ReactiveUnit<St,A,B>	{
fn	new<F>(st:	St,	f:	F)	->	ReactiveUnit<St,A,B>
where	F:	'static	+	Fn(&mut	St,A)	->	B
{
ReactiveUnit	{
state:	Arc::new(Mutex::new(st)),
event_handler:	Arc::new(f)
}
}
fn	bind<G,C>(&self,	g:	G)	->	ReactiveUnit<St,A,C>
where	G:	'static	+	Fn(&mut	St,B)	->	C	{
let	ev	=	Arc::clone(&self.event_handler);
ReactiveUnit	{
state:	Arc::clone(&self.state),
event_handler:	Arc::new(move	|st:	&mut	St,a|	{
let	r	=	ev(st,a);
let	r	=	g(st,r);
r
})
}
}
fn	plus<St2:	'static,C:	'static>(&self,	other:	ReactiveUnit<St2,B,C>)	->
ReactiveUnit<(Arc<Mutex<St>>,Arc<Mutex<St2>>),A,C>	{
let	ev1	=	Arc::clone(&self.event_handler);
let	st1	=	Arc::clone(&self.state);
let	ev2	=	Arc::clone(&other.event_handler);
let	st2	=	Arc::clone(&other.state);
ReactiveUnit	{
state:	Arc::new(Mutex::new((st1,st2))),
event_handler:	Arc::new(move	|stst:	&mut
(Arc<Mutex<St>>,Arc<Mutex<St2>>),a|	{
let	mut	st1	=	stst.0.lock().unwrap();

let	r	=	ev1(&mut	st1,	a);
let	mut	st2	=	stst.1.lock().unwrap();
let	r	=	ev2(&mut	st2,	r);
r
})
}
}
fn	apply(&self,	a:	A)	->	B	{
let	mut	st	=	self.state.lock().unwrap();
(self.event_handler)(&mut	st,	a)
}
}

Here,	we	find	that	a	ReactiveUnit	holds	state,	can	respond	to	an	input,	cause	side-
effects,	and	return	a	value.	Reactive	units	can	be	extended	with	bind	or
concatenated	with	plus.

Now,	let's	make	a	reactive	unit.	We	will	focus	on	web	frameworks	since	those
seem	to	be	popular.	First,	we	render	a	simple	HTML	page,	as	follows:	let
render1	=	ReactiveUnit::new((),|(),()|	{
let	html	=	r###"$('body').innerHTML	=	'
<header>
<h3	data-section="1"	class="active">Section	1</h3>
<h3	data-section="2">Section	2</h3>
<h3	data-section="3">Section	3</h3>
</header>
<div>page	content</div>
<footer>Copyright</footer>
';"###;
html.to_string()
});
println!("{}",	render1.apply(()));

Here,	the	unit	renders	a	simple	page	corresponding	to	section	1	on	a	website.	The
unit	will	always	render	a	whole	page	and	does	not	consider	any	state	or	input.
Let's	give	the	unit	more	responsibilities	by	telling	it	to	render	different	content
based	on	which	section	is	active:	let	render2	=	ReactiveUnit::new((),|(),section:
usize|	{

let	section_1	=	r###"$('body').innerHTML	=	'
<header>
<h3	data-section="1"	class="active">Section	1</h3>
<h3	data-section="2">Section	2</h3>
<h3	data-section="3">Section	3</h3>
</header>
<div>section	1	content</div>
<footer>Copyright</footer>
';"###;

let	section_2	=	r###"$('body').innerHTML	=	'
<header>
<h3	data-section="1">Section	1</h3>
<h3	data-section="2"	class="active">Section	2</h3>
<h3	data-section="3">Section	3</h3>
</header>
<div>section	2	content</div>
<footer>Copyright</footer>
';"###;

let	section_3	=	r###"$('body').innerHTML	=	'
<header>
<h3	data-section="1">Section	1</h3>
<h3	data-section="2">Section	2</h3>
<h3	data-section="3"	class="active">Section	3</h3>
</header>
<div>section	3	content</div>
<footer>Copyright</footer>
';"###;

if	section==1	{
section_1.to_string()
}	else	if	section==2	{
section_2.to_string()
}	else	if	section==3	{
section_3.to_string()

}	else	{
panic!("unknown	section")
}
});

println!("{}",	render2.apply(1));
println!("{}",	render2.apply(2));
println!("{}",	render2.apply(3));

Here,	the	unit	makes	use	of	the	parameter	to	decide	what	section	should	be
rendered.	This	is	starting	to	feel	more	like	a	UI	framework,	but	we	aren't	using
the	state,	yet.	Let's	try	using	that	to	address	a	common	web	problem—page
tearing.	When	a	large	portion	of	HTML	is	changed	on	a	web	page,	the	browser
must	recalculate	how	the	page	should	be	displayed.	Most	modern	browsers	do
this	in	stages	and	the	result	is	an	ugly	mishmash	of	components	being	visibly
thrown	around	the	page.

To	reduce	or	prevent	page	tearing,	we	should	only	update	portions	of	the	page
that	have	changed.	Let's	use	the	state	variable	along	with	the	input	parameter	to
only	send	updates	when	a	component	has	changed:	let	render3header	=
ReactiveUnit::new(None,|opsec:	&mut	Option<usize>,section:	usize|	{
let	section_1	=	r###"$('header').innerHTML	=	'
<h3	data-section="1"	class="active">Section	1</h3>
<h3	data-section="2">Section	2</h3>
<h3	data-section="3">Section	3</h3>
';"###;
let	section_2	=	r###"$('header').innerHTML	=	'
<h3	data-section="1">Section	1</h3>
<h3	data-section="2"	class="active">Section	2</h3>
<h3	data-section="3">Section	3</h3>
';"###;
let	section_3	=	r###"$('header').innerHTML	=	'
<h3	data-section="1">Section	1</h3>
<h3	data-section="2">Section	2</h3>
<h3	data-section="3"	class="active">Section	3</h3>
';"###;
let	changed	=	if	section==1	{

section_1
}	else	if	section==2	{
section_2
}	else	if	section==3	{
section_3
}	else	{
panic!("invalid	section")
};
if	let	Some(sec)	=	*opsec	{
if	sec==section	{	""	}
else	{
*opsec	=	Some(section);
changed
}
}	else	{
*opsec	=	Some(section);
changed
}
});

Here,	we	issue	commands	to	conditionally	render	changes	to	the	header.	If	the
header	is	already	in	the	correct	state,	then	we	do	nothing.	This	code	only	takes
responsibility	for	the	header	component.	We	also	need	to	render	changes	to	page
content:	let	render3content	=	ReactiveUnit::new(None,|opsec:	&mut
Option<usize>,section:	usize|	{
let	section_1	=	r###"$('div#content').innerHTML	=	'
section	1	content
';"###;
let	section_2	=	r###"$('div#content').innerHTML	=	'
section	2	content
';"###;
let	section_3	=	r###"$('div#content').innerHTML	=	'
section	3	content
';"###;
let	changed	=	if	section==1	{
section_1
}	else	if	section==2	{

section_2
}	else	if	section==3	{
section_3
}	else	{
panic!("invalid	section")
};
if	let	Some(sec)	=	*opsec	{
if	sec==section	{	""	}
else	{
*opsec	=	Some(section);
changed
}
}	else	{
*opsec	=	Some(section);
changed
}
});

Now,	we	have	a	component	for	the	header	and	another	component	for	the
content.	We	should	combine	these	two	into	a	single	unit.	FRP	libraries	would
probably	have	a	cool	neat	way	of	doing	this,	but	we	don't;	so	instead,	we	just
write	a	little	unit	to	combine	them	manually:	let	render3	=
ReactiveUnit::new((render3header,render3content),	|(rheader,rcontent),section:
usize|	{
let	header	=	rheader.apply(section);
let	content	=	rcontent.apply(section);
format!("{}{}",	header,	content)
});

Now,	let's	test	this	out:

println!("section	1:	{}",	render3.apply(1));

println!("section	2:	{}",	render3.apply(2));

println!("section	2:	{}",	render3.apply(2));

println!("section	3:	{}",	render3.apply(3));

Each	apply	issues	appropriate	new	update	commands.	The	redundant	apply	to
render	section	2	again	returns	no	commands,	as	intended.	This	is	really	lazy	code;
the	good	kind	of	lazy.

What	would	reactive	programming	be	without	event	handling?	Let's	handle	a
couple	of	signals	and	events.	On	top	of	the	page	state,	let's	introduce	some
database	interaction:	let	database	=	("hello	world",	5,	2);
let	react1	=	ReactiveUnit::new((database,render3),	|(database,render),evt:
(&str,&str)|	{
match	evt	{
("header	button	click",n)	=>	render.apply(n.parse::<usize>().unwrap()),
("text	submission",s)	=>	{	database.0	=	s;	format!("db.textfield1.set(\"{}\")",s)	},
("number	1	submission",n)	=>	{	database.1	+=	n.parse::<i32>().unwrap();
format!("db.numfield1.set(\"{}\")",database.1)	},
("number	2	submission",n)	=>	{	database.2	+=	n.parse::<i32>().unwrap();
format!("db.numfield2.set(\"{}\")",database.2)	},
_	=>	"".to_string()
}
});

println!("react	1:	{}",	react1.apply(("header	button	click","2")));
println!("react	1:	{}",	react1.apply(("header	button	click","2")));
println!("react	1:	{}",	react1.apply(("text	submission","abc	def")));
println!("react	1:	{}",	react1.apply(("number	1	submission","123")));
println!("react	1:	{}",	react1.apply(("number	1	submission","234")));
println!("react	1:	{}",	react1.apply(("number	2	submission","333")));
println!("react	1:	{}",	react1.apply(("number	2	submission","222")));

We	define	four	event	types	to	react	to.	Responding	to	page	state	changes	still
works	as	previously	defined.	Events	that	should	interact	with	the	database	issue
commands	to	update	the	database	locally	and	remotely.	A	view	of	the	output
JavaScript	looks	like	the	following:	event:	("header	button	click",	"2")
$('header').innerHTML	=	'
<h3	data-section="1">Section	1</h3>
<h3	data-section="2"	class="active">Section	2</h3>
<h3	data-section="3">Section	3</h3>
';$('div#content').innerHTML	=	'
section	2	content
';

event:	("header	button	click",	"2")

event:	("text	submission",	"abc	def")
db.textfield1.set("abc	def")

event:	("number	1	submission",	"123")
db.numfield1.set("128")

event:	("number	1	submission",	"234")
db.numfield1.set("362")

event:	("number	2	submission",	"333")
db.numfield2.set("335")

event:	("number	2	submission",	"222")
db.numfield2.set("557")

This	correspondence	demonstrates	how	simple	side-effect	units	can	be	composed
to	create	complex	programmatic	behavior.	This	is	all	built	from	an	FRP	library
that	is	less	than	50	lines	long.	Imagine	the	potential	utility	of	a	few	more	helper
functions.

Summary
In	this	chapter,	we	introduced	many	common	functional	design	patterns.	We
used	a	lot	of	scary	words,	such	as	functor,	monad,	and	combinator.	You	should
try	to	remember	these	words	and	their	meanings.	Other	scary	words,	such	as
contravariant,	you	can	probably	forget	unless	you	want	to	pursue	math.

In	an	applied	context,	we	learned	that	functors	can	hide	information	to	expose
simple	transformations	on	data.	The	monad	pattern	allows	us	to	turn	sequential
actions	into	units	of	computation.	Monads	can	be	used	to	create	iterators	that
also	behave	more	like	lists.	Laziness	can	be	used	to	defer	computation.	Also,
these	patterns	can	often	be	combined	in	useful	ways,	such	as	FRP,	which	is
gaining	popularity	as	a	tool	to	develop	user	interfaces	and	other	complex
interactive	programs.

In	the	next	chapter,	we	will	explore	concurrency.	We	will	introduce	the	Rust
concepts	of	thread/data	ownership,	shared	synchronized	data,	and	message
passing.	Thread-level	concurrency	is	something	that	Rust	was	specifically
designed	for.	If	you	have	worked	with	threads	in	other	languages,	then	hopefully
the	next	chapter	will	be	encouraging.

Questions
1.	 What	is	a	functor?
2.	 What	is	a	contravariant	functor?
3.	 What	is	a	monad?
4.	 What	are	the	monad	laws?
5.	 What	is	a	combinator?
6.	 Why	is	the	impl	keyword	necessary	for	closure	return	values?
7.	 What	is	lazy	evaluation?

Implementing	Concurrency
Concurrency	is	the	act	of	doing	two	things	at	the	same	time.	On	a	single-core
processor,	this	means	multitasking.	When	multitasking,	an	operating	system
will	switch	between	running	processes	to	give	each	of	them	a	share	of	time	to
use	the	processor.	On	a	multi-core	processor,	concurrent	processes	can	run
simultaneously.

In	this	chapter,	we	will	look	at	different	models	of	concurrency.	Some	of	these
tools	are	relevant,	others	are	used	more	for	educational	purposes.	Here,	we
recommend	and	explain	the	thread	model	of	concurrency.	Further,	we	will
explain	how	functional	design	patterns	can	make	it	easier	to	develop	programs
that	use	concurrency	effectively.

Learning	outcomes	will	include	the	following:

Recognizing	and	applying	subprocess	concurrency	appropriately
Understanding	the	nix	fork	concurrency	model	and	its	benefits
Recognizing	and	applying	thread	concurrency	appropriately
Understanding	Rust	primitive	Send	and	Sync	traits
Recognizing	and	applying	the	actor	design	pattern

	

	

Technical	requirements
A	recent	version	of	Rust	is	necessary	to	run	the	examples	provided:

https://www.rust-lang.org/en-US/install.html

This	chapter's	code	is	also	available	on	GitHub:

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Specific	installation	and	build	instructions	are	also	included	in	each	chapter's
README.md	file.

https://www.rust-lang.org/en-US/install.html
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Using	subprocess	concurrency
A	subprocess	is	a	command	that	is	started	from	within	another	process.	As	a
simple	example	of	this,	let's	create	a	parent	process	with	three	children.	process_a
will	be	the	parent.	Consider	the	following	code	snippet:	use
std::process::Command;
use	std::env::current_exe;

fn	main()	{
let	path	=	current_exe()
.expect("could	not	find	current	executable");
let	path	=	path.with_file_name("process_b");

let	mut	children	=	Vec::new();
for	_	in	0..3	{
children.push(
Command::new(path.as_os_str())
.spawn()
.expect("failed	to	execute	process")
);
}
for	mut	c	in	children	{
c.wait()
.expect("failed	to	wait	on	child");
}
}

The	child	process,	process_b,	runs	a	loop	and	prints	its	own	process	ID.	This	is
shown	as	follows:	use	std::{thread,time};
use	std::process;
fn	main()	{
let	t	=	time::Duration::from_millis(1000);
loop	{
println!("process	b	#{}",	process::id());
thread::sleep(t);

}
}

If	you	run	process_a,	then	you	will	see	output	from	the	three	process_b	processes:
process	b	#54061
process	b	#54060
process	b	#54059
process	b	#54061
process	b	#54059
process	b	#54060

If	you	inspect	the	process	tree	starting	at	process_a,	then	you	will	find	that	three
process_b	processes	are	attached	as	children,	as	shown	in	the	following	code:	$	ps
-a	|	grep	process_a
54058	ttys001	0:00.00	process_a
55093	ttys004	0:00.00	grep	process_a
$	pstree	54058
54058	process_a
>	54059	process_b
>	54060	process_b
>	54061	process_b

The	preceding	commands	to	inspect	the	process	tree	require	a	Unix-like
Command	Prompt.	The	subprocess	module	itself,	though,	is	more	or	less
platform-independent.

Subprocess	concurrency	is	useful	if	you	want	to	run	and	manage	other	projects
or	utilities.	A	good	example	of	subprocess	concurrency	done	right	is	the	cron
utility.	cron	accepts	a	configuration	file	that	specifies	different	commands	to	be
run,	and	a	schedule	of	when	to	run	them.	cron	continues	to	run	in	the	background
and	at	the	appropriate	time	starts	each	configured	process	according	to	schedule.

Subprocess	concurrency	is	not	well	suited	for	parallel	computation	in	general.
No	resources	will	be	shared	between	parent	and	child	processes	when	using	the
subprocess::Command	interface.	Also,	information	cannot	be	shared	easily	between
these	processes.

Understanding	nix	fork	concurrency
Before	threads	were	introduced	as	a	standard	for	POSIX	operating	systems	in
1995,	the	best	option	available	for	concurrency	was	fork.	On	these	operating
systems,	fork	was	a	fairly	primitive	command	that	allowed	programs	to	create
copies	of	themselves	as	child	processes.	The	name	fork	comes	from	the	idea	of
taking	one	process	and	splitting	it	into	two.

fork	is	not	platform-independent,	specifically	it	is	not	available	on	Windows,	and
we	recommend	using	threads	instead.	However,	for	educational	purposes,	it	is
helpful	to	introduce	some	of	the	concepts	from	fork	because	they	are	also
relevant	to	threaded	programming.

The	following	code	is	a	translation	of	the	preceding	process_a,	process_b	example
to	use	fork:	extern	crate	nix;
use	nix::unistd::{fork,ForkResult};
use	std::{thread,time};
use	std::process;

fn	main()	{
let	mut	children	=	Vec::new();
for	_	in	0..3	{
match	fork().expect("fork	failed")	{
ForkResult::Parent{	child:	pid	}	=>	{	children.push(pid);	}
ForkResult::Child	=>	{
let	t	=	time::Duration::from_millis(1000);
loop	{
println!("child	process	#{}",	process::id());
thread::sleep(t);
}
}
}
}
let	t	=	time::Duration::from_millis(1000);
loop	{

println!("parent	process	#{}",	process::id());
thread::sleep(t);
}
}

In	this	example,	the	parent-child	relationship	is	very	similar	to	our	first	example.
We	have	three	children	running	and	one	parent	managing	them.

It	should	be	noted	that	forked	processes	share	memory	initially.	Only	when
either	process	modifies	its	memory,	will	the	operating	system	then	perform	an
operation	called	copy-on-write,	duplicating	the	memory.	This	behavior	is	a	first
step	into	shared	memory	between	running	processes.

To	demonstrate	copy-on-write,	let's	allocate	200	MB	of	memory	and	fork	500
processes.	Without	copy-on-write,	this	would	be	100	GB	and	would	crash	most
personal	computers.	Consider	the	following	code:	extern	crate	nix;
use	nix::unistd::{fork};
use	std::{thread,time};

fn	main()	{
let	mut	big_data:	Vec<u8>	=	Vec::with_capacity(200000000);
big_data.push(1);
big_data.push(2);
big_data.push(3);
//Both	sides	of	the	fork,	will	continue	to	fork
//This	is	called	a	fork	bomb
for	_	in	0..9	{
fork().expect("fork	failed");
}
//2^9	=	512

let	t	=	time::Duration::from_millis(1000);
loop	{
//copy	on	write,	not	on	read
big_data[2];
thread::sleep(t);
}
}

Many	resources	from	the	parent	process	also	remain	available	and	safe	to	use
from	the	child	process.	This	is	very	useful	for	server	applications	that	listen	on	a
socket	in	the	parent	process	and	poll	for	incoming	connections	in	the	child
process.	This	simple	trick	permits	server	applications	to	distribute	work	across
worker	processes:	extern	crate	nix;
use	nix::unistd::{fork,ForkResult};
use	std::{thread,time};
use	std::process;
use	std::io::prelude::*;
use	std::net::TcpListener;

fn	serve(listener:	TcpListener)	->	!	{
for	stream	in	listener.incoming()	{
let	mut	buffer	=	[0;	2048];
let	mut	tcp	=	stream.unwrap();
tcp.read(&mut	buffer).expect("tcp	read	failed");
let	response	=	format!("respond	from	#{}\n",	process::id());
tcp.write(response.as_bytes()).expect("tcp	write	failed");
}
panic!("unreachable");
}

fn	main()	{
let	listener	=	TcpListener::bind("127.0.0.1:8888").unwrap();
let	mut	children	=	Vec::new();
for	_	in	0..3	{
match	fork().expect("fork	failed")	{
ForkResult::Parent{	child:	pid	}	=>	{	children.push(pid);	}
ForkResult::Child	=>	{	serve(listener)	}
}
}

let	t	=	time::Duration::from_millis(1000);
loop	{
thread::sleep(t);
}

}

In	this	example,	we	start	listening	for	connections	on	port	8888.	Then,	after
forking	three	times,	we	start	serving	responses	with	our	worker	process.	Sending
requests	to	the	server,	we	can	confirm	that	separate	processes	are	indeed
competing	to	serve	requests.	Consider	the	following	code:	$	curl
'http://localhost:8888/'
respond	from	#59485
$	curl	'http://localhost:8888/'
respond	from	#59486
$	curl	'http://localhost:8888/'
respond	from	#59487
$	curl	'http://localhost:8888/'
respond	from	#59485
$	curl	'http://localhost:8888/'
respond	from	#59486

All	three	workers	served	at	least	one	response.	Combining	the	first	strategy	of
memory	sharing	with	this	new	concept	of	built-in	load	balancing,	forked
processes	effectively	solve	several	common	problems	where	concurrency	is
desired.

However,	the	fork	concurrency	model	is	very	rigid.	Both	of	these	tricks	require
planning	the	application	to	strategically	fork	after	resources	are	allocated.	Fork
does	not	help	at	all	after	the	processes	have	been	split.	In	POSIX,	there	have
been	additional	standards	created	to	address	this	problem.	Sending	information
over	channels	or	sharing	memory	are	a	common	pattern,	much	like	in	Rust.
However,	none	of	these	solutions	have	proved	as	practical	as	threads.

Threads	implicitly	permit	inter-process	messaging	and	memory	sharing.	The	risk
of	threads	is	that	sharing	messages	or	memory	may	not	be	thread-safe	and	may
lead	to	memory	corruption.	Rust	is	built	from	the	ground	up	to	make	threaded
programming	safer.

Using	thread	concurrency
Rust	threads	have	the	following	features:

Share	memory
Share	resources,	such	as	files	or	sockets
Tend	to	be	thread-safe
Support	inter-thread	messaging
Are	platform-independent

For	the	preceding	reasons,	we	suggest	that	Rust	threads	are	better	suited	to	most
concurrency	use	cases	than	subprocesses.	If	you	want	to	distribute	computation,
circumvent	a	blocking	operation,	or	otherwise	utilize	concurrency	for	your
application—use	threads.

To	show	the	thread	pattern,	we	can	re-implement	the	preceding	examples.	Here
are	three	children	threads:	use	std::{thread,time};
use	std::process;
extern	crate	thread_id;

fn	main()	{
for	_	in	0..3	{
thread::spawn(||	{
let	t	=	time::Duration::from_millis(1000);
loop	{
println!("child	thread	#{}:{}",	process::id(),	
thread_id::get());
thread::sleep(t);
}
});
}
let	t	=	time::Duration::from_millis(1000);
loop	{
println!("parent	thread	#{}:{}",	process::id(),	
thread_id::get());

thread::sleep(t);
}
}

Here,	we	spawn	three	threads	and	let	them	run.	We	print	the	process	ID,	but	we
must	also	print	the	thread	ID	because	threads	share	the	same	process	ID.	Here	is
the	output	demonstrating	this:	parent	thread	#59804:140735902303104
child	thread	#59804:123145412530176
child	thread	#59804:123145410420736
child	thread	#59804:123145408311296
parent	thread	#59804:140735902303104
child	thread	#59804:123145410420736
child	thread	#59804:123145408311296

The	next	example	to	port	is	the	500	processes	and	shared	memory.	In	a	threaded
program,	sharing	might	look	something	like	the	following	code	snippet:	use	std::
{thread,time};
use	std::sync::{Mutex,	Arc};

fn	main()	{
let	mut	big_data:	Vec<u8>	=	Vec::with_capacity(200000000);
big_data.push(1);
big_data.push(2);
big_data.push(3);
let	big_data	=	Arc::new(Mutex::new(big_data));
for	_	in	0..512	{
let	big_data	=	Arc::clone(&big_data);
thread::spawn(move	||	{
let	t	=	time::Duration::from_millis(1000);
loop	{
let	d	=	big_data.lock().unwrap();
(*d)[2];
thread::sleep(t);
}
});
}
let	t	=	time::Duration::from_millis(1000);

loop	{
thread::sleep(t);
}
}

The	process	starts	500	threads,	all	sharing	the	same	memory.	Also,	thanks	to	the
lock,	we	could	modify	this	memory	safely	if	we	wanted.

Let's	try	the	server	example,	as	shown	in	the	following	code:	use	std::
{thread,time};
use	std::process;
extern	crate	thread_id;
use	std::io::prelude::*;
use	std::net::{TcpListener,TcpStream};
use	std::sync::{Arc,Mutex};

fn	serve(incoming:	Arc<Mutex<Vec<TcpStream>>>)	{
let	t	=	time::Duration::from_millis(10);
loop	{
{
let	mut	incoming	=	incoming.lock().unwrap();
for	stream	in	incoming.iter()	{
let	mut	buffer	=	[0;	2048];
let	mut	tcp	=	stream;
tcp.read(&mut	buffer).expect("tcp	read	failed");
let	response	=	format!("respond	from	#{}:{}\n",	
process::id(),	thread_id::get());
tcp.write(response.as_bytes()).expect("tcp	write	failed");
}
incoming.clear();
}
thread::sleep(t);
}
}

fn	main()	{
let	listener	=	TcpListener::bind("127.0.0.1:8888").unwrap();

let	incoming	=	Vec::new();
let	incoming	=	Arc::new(Mutex::new(incoming));
for	_	in	0..3	{
let	incoming	=	Arc::clone(&incoming);
thread::spawn(move	||	{
serve(incoming);
});
}

for	stream	in	listener.incoming()	{
let	mut	incoming	=	incoming.lock().unwrap();
(*incoming).push(stream.unwrap());
}
}

Here,	three	worker	processes	scrape	a	queue	of	requests	that	get	served	down
from	the	parent	process.	All	three	children	and	the	parent	need	to	read	and
mutate	the	request	queue.	To	mutate	the	request	queue,	each	thread	must	lock	the
data.	There	is	a	dance	here	that	the	children	and	parent	do	to	avoid	holding	the
lock	for	too	long.	If	one	thread	monopolizes	the	locked	resource,	then	all	other
processes	wanting	to	use	the	data	must	wait.

The	trade-off	of	locking	and	waiting	is	called	contention.	In	the	worst	case
scenario,	two	threads	can	each	hold	a	lock	while	waiting	for	the	other	thread	to
release	the	lock	it	holds.	This	is	called	deadlock.

Contention	is	a	difficult	problem	associated	with	mutable	shared	state.	For	the
preceding	server	case,	it	would	have	been	better	to	send	messages	to	children
threads.	Message	passing	does	not	create	locks.

Here	is	a	lock-free	server:

use	std::{thread,time};

use	std::process;

use	std::io::prelude::*;

extern	crate	thread_id;

use	std::net::{TcpListener,TcpStream};

use	std::sync::mpsc::{channel,Receiver};

use	std::collections::VecDeque;

fn	serve(receiver:	Receiver<TcpStream>)	{

			let	t	=	time::Duration::from_millis(10);

			loop	{

						let	mut	tcp	=	receiver.recv().unwrap();

						let	mut	buffer	=	[0;	2048];

						tcp.read(&mut	buffer).expect("tcp	read	failed");

						let	response	=	format!("respond	from	#{}:{}\n",	process::id(),	

													thread_id::get());

						tcp.write(response.as_bytes()).expect("tcp	write	failed");

						thread::sleep(t);

			}

}

fn	main()	{

			let	listener	=	TcpListener::bind("127.0.0.1:8888").unwrap();

			let	mut	channels	=	VecDeque::new();

			for	_	in	0..3	{

						let	(sender,	receiver)	=	channel();

						channels.push_back(sender);

						thread::spawn(move	||	{

									serve(receiver);

						});

			}

			for	stream	in	listener.incoming()	{

						let	round_robin	=	channels.pop_front().unwrap();

						round_robin.send(stream.unwrap()).unwrap();

						channels.push_back(round_robin);

			}

}

Channels	work	much	better	in	this	situation.	This	multi-threaded	server	has	load
balancing	controlled	from	the	parent	process	and	does	not	suffer	from	lock
contention.

Channels	are	not	strictly	better	than	shared	state.	For	example,	legitimately
contentious	resources	are	good	to	handle	with	locks.	Consider	the	following
code	snippet:	use	std::{thread,time};
extern	crate	rand;
use	std::sync::{Arc,Mutex};
#[macro_use]	extern	crate	lazy_static;
lazy_static!	{
static	ref	NEURAL_NET_WEIGHTS:	Vec<Arc<Mutex<Vec<f64>>>>	=	{
let	mut	nn	=	Vec::with_capacity(10000);
for	_	in	0..10000	{
let	mut	mm	=	Vec::with_capacity(100);
for	_	in	0..100	{
mm.push(rand::random::<f64>());
}
let	mm	=	Arc::new(Mutex::new(mm));
nn.push(mm);
}

nn
};
}

fn	train()	{
let	t	=	time::Duration::from_millis(100);
loop	{
for	_	in	0..100	{
let	update_position	=	rand::random::<u64>()	%	1000000;
let	update_column	=	update_position	/	10000;
let	update_row	=	update_position	%	100;
let	update_value	=	rand::random::<f64>();
let	mut	update_column	=	NEURAL_NET_WEIGHTS[update_column	as
usize].lock().unwrap();
update_column[update_row	as	usize]	=	update_value;
}
thread::sleep(t);
}
}

fn	main()	{
let	t	=	time::Duration::from_millis(1000);
for	_	in	0..500	{
thread::spawn(train);
}
loop	{
thread::sleep(t);
}
}

Here,	we	have	a	large	mutable	data	structure	(a	neural	network)	that	is	broken
into	rows	and	columns.	Each	column	has	a	thread-safe	lock.	Row	data	is	all
associated	with	the	same	lock.	This	pattern	is	useful	for	data	and	computation-
heavy	programs.	Neural	network	training	is	a	good	example	of	where	this
technique	may	be	relevant.	Unfortunately,	the	code	does	not	implement	an	actual
neural	network,	but	it	does	demonstrate	how	lock	concurrency	could	be	used	to
do	so.

Understanding	Send	and	Sync	traits
In	the	previous	neural	network	example,	we	used	a	static	data	structure	that	was
shared	between	threads	without	being	wrapped	in	a	counter	or	lock.	It	contained
locks,	but	why	was	the	outer	data	structure	permitted	to	be	shared?

To	answer	this	question,	let's	first	review	the	rules	of	ownership:

Each	value	in	Rust	has	a	variable	that's	called	its	owner
There	can	only	be	one	owner	at	a	time
When	the	owner	goes	out	of	scope,	the	value	will	be	dropped

With	these	rules	in	mind,	let's	try	to	share	a	variable	across	threads,	as	follows:
use	std::thread;

fn	main()	{
let	a	=	vec![1,	2,	3];

thread::spawn(||	{
println!("a	=	{:?}",	a);
});
}

If	we	try	to	compile	this,	then	we	will	get	an	error	complaining	of	the	following:
closure	may	outlive	the	current	function,	but	it	borrows	`a`,	which	is	owned
by	the	current	function

This	error	indicates	the	following:

Referencing	variable	a	from	inside	the	closure	is	okay
The	closure	lives	longer	than	variable	a

Closures	sent	to	threads	must	have	a	static	lifetime.	Variable	a	is	a	local	variable,
and	thus	will	go	out	of	scope	before	the	static	closure.

To	fix	this	error,	it	is	common	to	move	the	variable	a	into	the	closure.	Thus,	a

will	inherit	the	same	lifetime	as	the	closure:	use	std::thread;

fn	main()	{
let	a	=	vec![1,	2,	3];

thread::spawn(move	||	{
println!("a	=	{:?}",	a);
});
}

This	program	will	compile	and	run.	Ownership	of	the	variable	a	is	transferred	to
the	closure	and	therefore	lifetime	issues	are	avoided.	It	should	be	noted	that
transferring	ownership	of	a	variable	implies	that	the	original	variable	is	no
longer	valid.	This	is	caused	by	ownership	rule	number	2—there	can	only	by	one
owner	at	a	time.

If	we	try	to	share	the	variable	again,	we	get	an	error:	use	std::thread;

fn	main()	{
let	a	=	vec![1,	2,	3];

thread::spawn(move	||	{
println!("a	=	{:?}",	a);
});

thread::spawn(move	||	{
println!("a	=	{:?}",	a);
});
}

Compiling	this	gives	us	this	error	message:	$	rustc	t.rs
error[E0382]:	capture	of	moved	value:	`a`
-->	t.rs:11:28
|
6	|	thread::spawn(move	||	{
|	-------	value	moved	(into	closure)	here
...
11	|	println!("a	=	{:?}",	a);

|	^	value	captured	here	after	move
|
=	note:	move	occurs	because	`a`	has	type	`std::vec::Vec<i32>`,	which	does	not
implement	the	`Copy`	trait

error:	aborting	due	to	previous	error

For	more	information	about	this	error,	try	`rustc	--explain	E0382`.

This	compiler	error	is	a	bit	complicated.	It	says	the	following:

Capture	of	moved	value:	a
Value	moved	(into	closure)	here
Value	captured	here	after	move
Note—move	occurs	because	a	does	not	implement	the	Copy	trait

Part	four	of	the	error	tells	us	that	if	a	implements	the	Copy	trait,	then	we	would	not
have	this	error.	However,	that	would	be	implicitly	copying	the	variable	for	us,
meaning	we	would	not	be	sharing	data.	So,	that	suggestion	is	not	useful	for	us.

The	main	problem	is	part	one—capture	of	moved	value	a:

1.	 First	we	move	the	variable	a	into	the	first	closure.	We	needed	to	do	this	to
avoid	the	lifetime	problem	and	to	use	the	variable.	Using	a	variable	in	a
closure	is	called	a	capture.

2.	 Next	we	use	variable	a	in	the	second	closure.	This	is	the	value	captured	after
move.

So	our	problem	is	that	moving	variable	a	invalidates	it	for	further	use.	A	much
simpler	example	of	this	problem	would	be	as	follows:	fn	main()	{
let	a	=	vec![1,	2,	3];
let	b	=	a;
}

By	moving	ownership	of	the	value	in	a	into	b,	we	invalidate	the	original	variable.

So	what	do	we	do?	Are	we	stuck?

In	the	neural	network	example,	we	used	a	shared	data	structure,	so	clearly	there

must	be	a	way.	If	there	is	a	way,	hopefully	there	is	also	a	rule	to	make	sense	of
the	problem.	To	fully	understand	thread-safety	rules	in	Rust,	you	must
understand	three	concepts—scope,	Send,	and	Sync.

First,	let's	address	scope.	Scope	for	threads	means	that	variables	used	must	be
allowed	to	capture	the	variables	that	they	used.	Variables	can	be	captured	by
value,	by	reference,	or	by	mutable	reference.

Our	first	example,	not	using	move,	almost	worked.	The	only	problem	was	that	the
lifetime	of	the	variable	we	used	went	out	of	scope	too	soon.	All	thread	closures
must	have	static	lifetimes,	and	therefore	variables	that	they	capture	must	also
have	static	lifetimes.	Adjusting	for	this,	we	can	create	a	simple	two-thread
program	that	captures	our	variable,	A,	by	reference	and	therefore	does	not	move
the	variable:	use	std::thread;

fn	main()	{
static	A:	[u8;	100]	=	[22;	100];

thread::spawn(||	{
A[3];
});

thread::spawn(||	{
A[3]
});
}

Reading	from	static	variables	is	safe.	Mutating	static	variables	is	unsafe.	Static
variables	are	also	disallowed	from	allocating	heap	memory	directly,	so	they	can
be	difficult	to	work	with.

Using	the	lazy_static	crate	is	a	good	way	to	create	static	variables	with	types	that
have	memory	allocation	and	need	initialization:	use	std::thread;
#[macro_use]	extern	crate	lazy_static;

lazy_static!	{
static	ref	A:	Vec<u32>	=	{
vec![1,	2,	3]

};
}

fn	main()	{
thread::spawn(||	{
A[1];
});

thread::spawn(||	{
A[2];
});
}

A	second	way	to	fix	scope	problems	is	to	use	a	reference	counter,	such	as	Arc.
Here,	we	use	Arc	instead	of	Rc	because	Arc	is	thread-safe	and	Rc	is	not.	Consider
the	following	code:	use	std::thread;
use	std::sync::{Arc};

fn	main()	{
let	a	=	Arc::new(vec![1,	2,	3]);
{
let	a	=	Arc::clone(&a);
thread::spawn(move	||	{
a[1];
});
}

{
let	a	=	Arc::clone(&a);
thread::spawn(move	||	{
a[1];
});
}
}

The	reference	counter	moves	the	reference	into	the	closure.	However,	the
internal	data	is	shared,	so	it	is	then	possible	to	reference	common	data.

If	shared	data	should	be	mutated,	then	a	Mutex	lock	can	allow	thread-safe	locking.
Another	useful	lock	is	the	std::sync::RwLock.	This	is	shown	as	follows:	use
std::thread;
use	std::sync::{Arc,Mutex};

fn	main()	{
let	a	=	Arc::new(Mutex::new(vec![1,	2,	3]));
{
let	a	=	Arc::clone(&a);
thread::spawn(move	||	{
let	mut	a	=	a.lock().unwrap();
(*a)[1]	=	2;
});
}
{
let	a	=	Arc::clone(&a);
thread::spawn(move	||	{
let	mut	a	=	a.lock().unwrap();
(*a)[1]	=	3;
});
}
}

So	why	is	mutation	allowed	after	the	lock,	but	not	before?	The	answer	is	Send	and
Sync.

Send	and	Sync	are	marker	traits.	A	marker	trait	does	not	implement	any
functionality;	however,	it	indicates	that	a	type	has	some	property.	These	two
properties	tell	the	compiler	what	behavior	should	be	allowed	with	regards	to
sharing	data	between	threads.

These	are	the	rules	regarding	thread	data	sharing:

A	type	is	Send	if	it	is	safe	to	send	it	to	another	thread
A	type	is	Sync	if	it	is	safe	to	share	between	multiple	threads

To	make	mutable	data	that	can	be	shared	across	threads,	whatever	data	type,	you
use	must	implement	Sync.	The	standard	Rust	library	has	some	thread-safe

concurrency	primitives,	such	as	Mutex,	for	this	purpose.	If	you	don't	like	the
options	available,	then	you	can	search	for	another	crate	or	make	something
yourself.

To	implement	Sync	for	a	type,	just	implement	the	trait	with	no	body:	use
std::thread;

struct	MyBox(u8);
unsafe	impl	Send	for	MyBox	{}
unsafe	impl	Sync	for	MyBox	{}

static	A:	MyBox	=	MyBox(22);

fn	main()	{
thread::spawn(move	||	{
A.0
});
thread::spawn(move	||	{
A.0
});
}

Be	warned—incorrectly	implementing	Send	or	Sync	can	cause	undefined	behavior.
The	traits	are	always	unsafe	to	implement.	Thankfully,	both	of	these	marker
traits	are	generally	derived	by	the	compiler,	so	you	will	very	rarely	need	to
manually	derive	them.

With	these	various	rules	in	mind,	we	can	see	how	Rust	prevents	many	common
threading	bugs.	Foremost,	the	ownership	system	prevents	a	lot	of	problems.
Then,	to	allow	some	inter-thread	communication,	we	find	that	channels	and
locks	can	help	to	safely	implement	most	concurrency	models.

This	was	a	lot	of	trial	and	error	but,	in	summary,	we	learned	that	thread,	move,
channel,	Arc,	and	Mutex	will	get	us	through	most	problems.

Using	functional	design	for
concurrency
Concurrency	forces	the	programmer	to	be	more	careful	about	information
sharing.	This	difficulty	coincidentally	encourages	good	functional	programming
practices,	such	as	immutable	data	and	pure	functions;	when	computation	is	not
context-sensitive,	it	tends	to	also	be	thread-safe.

Functional	programming	sounds	great	for	concurrency,	but	are	there	downsides?

In	one	example	of	good	intentions	with	bad	effects,	during	development	of	a
functional	language	called	Haskell,	the	development	team	(https://www.infoq.com/i
nterviews/armstrong-peyton-jones-erlang-haskell)	wanted	to	make	programs	run	faster
using	concurrency.	Due	to	a	unique	trait	of	the	Haskell	language,	it	was	possible
to	run	all	expressions	and	sub-expressions	in	new	threads.	The	development
team	thought	this	sounded	great	and	tested	it	out.

The	result	was	that	more	time	was	spent	spawning	new	threads	than	doing	any
computation.	The	idea	still	had	merit,	but	it	turned	out	that	implementing
concurrency	automatically	would	be	difficult.	There	are	many	trade-offs	in
concurrent	programming.	Letting	the	programmer	make	decisions	regarding
these	trade-offs	is	the	current	state-of-the-art.

So,	from	functional	programming,	what	patterns	have	proven	useful?

There	are	many	patterns	for	concurrent	programming,	but	here	we	will	introduce
a	few	primitives:

Actors:	Threads	and	patterns	of	behavior
Supervisors:	Monitor	and	manage	actors
Routers:	Send	messages	between	actors
Monads:	Composable	units	of	behavior

First,	let's	look	at	actors	in	the	following	code:	use	std::thread;
use	std::sync::mpsc::{channel};

https://www.infoq.com/interviews/armstrong-peyton-jones-erlang-haskell

use	std::time;

fn	main()	{
let	(pinginsend,pinginrecv)	=	channel();
let	(pingoutsend,pingoutrecv)	=	channel();
let	mut	ping	=	1;
thread::spawn(move	||	{
let	t	=	time::Duration::from_millis(1000);
loop	{
let	n	=	pinginrecv.recv().unwrap();
ping	+=	n;
println!("ping	{}",	ping);
thread::sleep(t);
pingoutsend.send(ping).unwrap();
}
});

let	(ponginsend,ponginrecv)	=	channel();
let	(pongoutsend,pongoutrecv)	=	channel();
let	mut	pong	=	2;
thread::spawn(move	||	{
let	t	=	time::Duration::from_millis(1000);
loop	{
let	n	=	ponginrecv.recv().unwrap();
pong	+=	n;
println!("pong	{}",	pong);
thread::sleep(t);
pongoutsend.send(pong).unwrap();
}
});

let	mut	d	=	3;
loop	{
pinginsend.send(d).unwrap();
d	=	pingoutrecv.recv().unwrap();
ponginsend.send(d).unwrap();
d	=	pongoutrecv.recv().unwrap();

}
}

Here	we	have	two	threads	sending	messages	back	and	forth.	Is	this	really	much
different	than	any	of	the	previous	examples?

There	is	a	fairly	common	saying	in	functional	programming	that	"a	closure	is	a
poor	man's	object,	and	an	object	is	a	poor	man's	closure".

According	to	object-oriented	programming,	objects	have	a	type,	fields,	and
methods.	The	closures	we	define	hold	their	own	mutable	state,	like	fields	of	on
an	object.	The	ping	and	pong	closures	have	slightly	different	types.	The	behavior
inside	the	closure	could	be	thought	of	as	a	single	nameless	method	on	the	closure
object.	There	are	similarities	here	between	object	and	closure.

However,	it	would	be	much	nicer	to	use	a	normal	object.	The	problem	with
attempting	this	is	that	the	thread	boundary	gets	in	the	way.	Threads	do	not
expose	methods,	only	message	passing.	As	a	compromise,	we	could	wrap	the
message	passing	into	the	form	of	methods.	This	would	hide	all	of	the	channel
management	and	would	make	programming	with	concurrent	objects	much	nicer.
We	call	this	pattern	the	actor	model.

An	actor	is	very	similar	to	an	OOP	object	with	the	additional	property	that	it
lives	in	its	own	thread.	Messages	are	sent	to	the	actor,	the	actor	processes	the
messages,	and	maybe	sends	out	messages	of	its	own.	The	actor	model	is	like	a
busy	city	of	people	living	and	working	doing	different	jobs	but	interacting	and
exchanging	with	one	another	according	to	their	own	schedules.

There	are	crates	that	attempt	to	provide	elegant	concurrent	actor	behavior,	but
we	won't	endorse	any	specifically.	For	the	time	being,	please	just	squint	your
eyes	and	continue	to	pretend	that	closures	are	similar	to	objects.

In	the	next	example,	let's	wrap	these	actors	into	functions	so	that	they	can	be
created	more	easily:	use	std::thread;
use	std::sync::mpsc::{channel,Sender,Receiver};
use	std::time;
extern	crate	rand;

fn	new_ping()	->	(Sender<u64>,	Receiver<u64>)	{
let	(pinginsend,pinginrecv)	=	channel();
let	(pingoutsend,pingoutrecv)	=	channel();
let	mut	ping	=	1;
thread::spawn(move	||	{
let	t	=	time::Duration::from_millis(1000);
loop	{
let	n	=	pinginrecv.recv().unwrap();
ping	+=	n;
println!("ping	{}",	ping);
thread::sleep(t);
pingoutsend.send(ping).unwrap();
}
});
(pinginsend,	pingoutrecv)
}

fn	new_pong()	->	(Sender<u64>,	Receiver<u64>)	{
let	(ponginsend,ponginrecv)	=	channel();
let	(pongoutsend,pongoutrecv)	=	channel();
let	mut	pong	=	2;
thread::spawn(move	||	{
let	t	=	time::Duration::from_millis(1000);
loop	{
let	n	=	ponginrecv.recv().unwrap();
pong	+=	n;
println!("pong	{}",	pong);
thread::sleep(t);
pongoutsend.send(pong).unwrap();
}
});
(ponginsend,	pongoutrecv)
}

To	run	the	example,	we	will	create	three	of	each	type	of	actor	and	store	the
channels	in	a	vector,	as	shown	in	the	following	code:	fn	main()	{
let	pings	=	vec![new_ping(),	new_ping(),	new_ping()];

let	pongs	=	vec![new_pong(),	new_pong(),	new_pong()];
loop	{
let	mut	d	=	3;

let	(ref	pingin,ref	pingout)	=	pings[(rand::random::<u64>()	%	3)	as	usize];
pingin.send(d).unwrap();
d	=	pingout.recv().unwrap();

let	(ref	pongin,ref	pongout)	=	pongs[(rand::random::<u64>()	%	3)	as	usize];
pongin.send(d).unwrap();
pongout.recv().unwrap();
}
}

Now,	we	have	actors	and	a	really	basic	supervisor	for	each	actor	group.	The
supervisor	here	is	just	a	vector	to	keep	track	of	communication	channels	for	each
actor.	A	good	supervisor	should	periodically	check	the	health	of	each	actor,	kill
bad	actors,	and	resupply	the	stock	of	good	actors.

The	last	actor-based	primitive	that	we	will	mention	is	routing.	Routing	is	the
method	equivalent	of	object-oriented	programming.	OOP	method	calls	were
originally	called	message	passing.	The	actor	model	is	very	object-oriented	and
accordingly	we	still	call	methods	by	actually	passing	messages	around.	We	are
still	using	the	poor	man's	objects	(closures),	so	our	routing	will	probably	look
like	a	glorified	if	statement.

To	start	our	actor	router,	we	will	define	two	data	types—addresses	and	messages.
Addresses	should	define	all	possible	destinations	and	routing	behaviors	for
messages.	Messages	should	correspond	to	all	possible	method	calls	from	all
actors.	Here	is	our	extended	ping	pong	application:	use	std::thread;
use	std::sync::mpsc::{channel,Sender,Receiver};
use	std::time;
extern	crate	rand;

enum	Address	{
Ping,
Pong
}

enum	Message	{
PingPlus(u64),
PongPlus(u64),
}

Then	we	define	our	actors.	They	now	need	to	match	against	the	new	Message	type,
and	outgoing	messages	should	have	an	Address	in	addition	to	a	Message.	Despite	the
changes,	the	code	remains	very	similar	to	before:	fn	new_ping()	->
(Sender<Message>,	Receiver<(Address,Message)>)	{
let	(pinginsend,pinginrecv)	=	channel();
let	(pingoutsend,pingoutrecv)	=	channel();
let	mut	ping	=	1;
thread::spawn(move	||	{
let	t	=	time::Duration::from_millis(1000);
loop	{
let	msg	=	pinginrecv.recv().unwrap();
match	msg	{
Message::PingPlus(n)	=>	{	ping	+=	n;	},
_	=>	panic!("Unexpected	message")
}
println!("ping	{}",	ping);
thread::sleep(t);
pingoutsend.send((
Address::Pong,
Message::PongPlus(ping)
)).unwrap();
pingoutsend.send((
Address::Pong,
Message::PongPlus(ping)
)).unwrap();
}
});
(pinginsend,	pingoutrecv)
}

fn	new_pong()	->	(Sender<Message>,	Receiver<(Address,Message)>)	{

let	(ponginsend,ponginrecv)	=	channel();
let	(pongoutsend,pongoutrecv)	=	channel();
let	mut	pong	=	1;
thread::spawn(move	||	{
let	t	=	time::Duration::from_millis(1000);
loop	{
let	msg	=	ponginrecv.recv().unwrap();
match	msg	{
Message::PongPlus(n)	=>	{	pong	+=	n;	},
_	=>	panic!("Unexpected	message")
}
println!("pong	{}",	pong);
thread::sleep(t);
pongoutsend.send((
Address::Ping,
Message::PingPlus(pong)
)).unwrap();
pongoutsend.send((
Address::Ping,
Message::PingPlus(pong)
)).unwrap();
}
});
(ponginsend,	pongoutrecv)
}

Each	ping	pong	process	loops	to	consume	one	message	and	send	two	more
across.	The	last	component	for	the	program	is	initialization	and	routing:	fn
main()	{
let	pings	=	vec![new_ping(),	new_ping(),	new_ping()];
let	pongs	=	vec![new_pong(),	new_pong(),	new_pong()];

//Start	the	action
pings[0].0.send(Message::PingPlus(1)).unwrap();

//This	thread	will	be	the	router
//This	is	a	busy	wait	and	otherwise	bad	code

//select!	would	be	much	better,	but	it	is	still	experimental
//https://doc.rust-lang.org/std/macro.select.html
let	t	=	time::Duration::from_millis(10);
loop	{
let	mut	mail	=	Vec::new();

for	(_,r)	in	pings.iter()	{
for	(addr,msg)	in	r.try_iter()	{
mail.push((addr,msg));
}
}
for	(_,r)	in	pongs.iter()	{
for	(addr,msg)	in	r.try_iter()	{
mail.push((addr,msg));
}
}

for	(addr,msg)	in	mail.into_iter()	{
match	addr	{
Address::Ping	=>	{
let	(ref	s,_)	=	pings[(rand::random::<u32>()	as	usize)	%	pings.len()];
s.send(msg).unwrap();
},
Address::Pong	=>	{
let	(ref	s,_)	=	pongs[(rand::random::<u32>()	as	usize)	%	pongs.len()];
s.send(msg).unwrap();
}
}
}
thread::sleep(t);
}
}

After	initializing	the	different	actors,	the	main	thread	starts	acting	as	the	router.
The	router	is	a	single	thread	with	the	sole	responsibility	of	finding	destinations,
then	moving,	copying,	cloning,	and	otherwise	distributing	messages	to	the
recipient	threads.	This	is	not	a	complex	solution,	but	it	is	effective,	and	uses	only

the	typesafe,	thread-safe,	platform-independent	primitives	that	we	have
introduced	so	far.

In	a	more	complex	example,	the	routing	Address	will	typically	have	the	following:

An	actor	role
A	method	name
Argument	type	signatures

The	message	would	then	be	the	arguments	according	to	the	preceding	type
signature.	Sending	a	message	from	an	actor	is	as	simple	as	sending	your
(Address,Message)	to	the	router.	The	router	at	this	time	should	be	regularly	checking
each	channel	for	new	routing	requests.	When	it	sees	the	new	message,	it	will
pick	an	actor	that	satisfies	the	Address	condition	and	send	the	message	to	that
actor's	inbox.

Watching	the	output,	each	ping	pong	action	doubles	the	number	of	messages
received.	If	each	thread	didn't	do	so	much	sleeping,	then	the	program	could	get
out	of	hand	quickly.	Messaging	noise	is	one	risk	of	overusing	the	actor	model.

Summary
In	this	chapter,	we	introduced	the	primitives	of	concurrent	computation.
Subprocesses,	forked	processes,	and	threads	are	the	basic	building	blocks	of	all
concurrent	applications.	In	Rust	threads,	there	are	additional	concerns	that	are
introduced	by	the	language	to	encourage	type	and	thread	safety.

In	several	examples,	we	built	a	concurrent	web	server	using	fork	or	threads.
Later,	while	exploring	thread	behavior,	we	looked	closely	at	what	data	can	be
shared	between	threads	and	how	information	can	be	sent	between	threads	safely.

In	the	design	pattern	section,	we	introduced	the	actor	design	pattern.	This
popular	technique	combines	some	elements	of	object-oriented	programming
with	other	concepts	from	functional	programming.	The	result	is	a	programming
tool	designed	specifically	for	complex	resilient	concurrency.

In	the	next	chapter,	we	will	explore	performance,	debugging,	and
metaprogramming.	Performance	can	be	hard	to	measure	or	compare,	but	we	will
try	to	introduce	habits	that	are	strictly	good	for	performance.	To	help	debugging,
we	will	look	at	proactive	and	reactive	techniques	to	solve	issues.	Proactive
debugging	is	a	set	of	techniques,	such	as	proper	error	handling,	that	either
prevents	bugs	or	makes	them	easier	to	document	and	resolve.	Reactive
techniques	are	useful	for	difficult	bugs	that	don't	have	an	obvious	cause.	Finally,
metaprogramming	can	do	lots	of	complicated	work	behind	the	scenes	to	make
ugly	code	look	nicer.

Questions
1.	 What	is	a	subprocess?
2.	 Why	is	fork	called	fork?
3.	 Is	fork	still	useful?
4.	 When	were	threads	standardized?
5.	 Why	is	move	sometimes	needed	for	thread	closures?
6.	 What	is	the	difference	between	Send	and	Sync	traits?
7.	 Why	are	we	allowed	to	lock	and	then	mutate	Mutex	without	an	unsafe	block?

Performance,	Debugging,	and
Metaprogramming
Writing	fast	efficient	code	can	be	something	to	be	proud	of.	It	also	might	be	a
waste	of	your	employer's	resources.	In	the	performance	section,	we	will	explore
how	to	tell	the	difference	between	the	two	and	give	best-practices,	processes,
and	guidelines	to	keep	your	application	slim.

In	the	debugging	section,	we	offer	tips	to	help	find	and	resolve	bugs	faster.	We
also	introduce	the	concept	of	defensive	coding,	which	describes	techniques	and
habits	to	prevent	or	isolate	potential	issues.

In	the	metaprogramming	section,	we	explain	macros	and	other	features	that	are
similar	to	macros.	Rust	has	a	fairly	sophisticated	metaprogramming	system	that
allows	the	user	or	libraries	to	extend	the	language	with	automatic	code
generation	or	custom	syntax	forms.

In	this	chapter,	we	will	learn	the	following:

Recognizing	and	applying	good	performant	code	practices
Diagnosing	and	improving	performance	bottlenecks
Recognizing	and	applying	good	defensive	coding	practices
Diagnosing	and	resolving	software	bugs
Recognizing	and	applying	metaprogramming	techniques

Technical	requirements
A	recent	version	of	Rust	is	necessary	to	run	the	examples	provided:

https://www.rust-lang.org/en-US/install.html

This	chapter's	code	is	available	on	GitHub:

https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Specific	installation	and	build	instructions	are	also	included	in	each	chapter's
README.md	file.

https://www.rust-lang.org/en-US/install.html
https://github.com/PacktPublishing/Hands-On-Functional-Programming-in-RUST

Writing	faster	code
Premature	optimization	is	the	root	of	all	evil
–	Donald	Knuth

A	good	software	design	tends	to	create	faster	programs,	while	a	bad	software
design	tends	to	create	slower	programs.	If	you	find	yourself	asking,	"Why	is	my
program	slow?,	then	first	ask	yourself,	Is	my	program	disorderly?"

In	this	section,	we	describe	some	performance	tips.	These	are	generally	good
habits	when	programming	in	Rust	that	will	coincidentally	lead	to	improved
performance.	If	your	program	is	slow,	then	first	check	to	see	whether	you	are
violating	one	of	these	principles.

Compiling	with	release	mode
This	is	a	really	simple	suggestion	that	you	should	know	about	if	you	are	at	all
concerned	about	performance.

Rust	normally	compiles	in	debug	mode,	which	is	slow:

cargo	build

Rust	optionally	compiles	in	release	mode,	which	is	fast:

cargo	build	--release

Here	is	a	comparison	using	debug	mode	for	a	toy	program:

$	time	performance_release_mode

real	0m13.424s

user	0m13.406s

sys	0m0.010s

The	following	is	the	release	mode:

$	time	./performance_release_mode

real	0m0.316s

user	0m0.309s

sys	0m0.005s

Release	mode	is	98%	more	efficient	with	regard	to	CPU	usage	for	this	example.

	

	

	

Doing	less	work
Faster	programs	do	less.	All	optimization	is	a	process	of	searching	for	work	that
doesn't	need	to	be	done,	and	then	not	doing	it.

Similarly,	the	smallest	programs	fewer	resources	less.	All	space	optimization	is	a
process	of	searching	for	resources	that	don't	need	to	be	used,	and	then	not	using
them.

For	example,	don't	collect	an	iterator	when	you	don't	need	the	result,	consider
the	following	example:	extern	crate	flame;
use	std::fs::File;

fn	main()	{
let	v:	Vec<u64>	=	vec![2;	1000000];

flame::start("Iterator	.collect");
let	mut	_z	=	vec![];
for	_	in	0..1000	{
_z	=	v.iter().map(|x|	x*x).collect::<Vec<u64>>();
}
flame::end("Iterator	.collect");

flame::start("Iterator	iterate");
for	_	in	0..1000	{
v.iter().map(|x|	x	*	x).for_each(drop);
}
flame::end("Iterator	iterate");

flame::dump_html(&mut	File::create("flame-graph.html").unwrap()).unwrap();
}

Needlessly	collecting	the	result	of	the	iterator	makes	the	code	27%	slower
compared	to	code	that	just	drops	the	result.

Memory	allocation	is	similar.	Well-designed	code	preferring	pure	functions	and
avoiding	side-effects	will	tend	to	minimize	memory	usage.	In	contrast,	messy
code	can	lead	to	old	data	hanging	around.	Rust	memory	safety	does	not	extend
to	preventing	memory	leaks.	Leaks	are	considered	safe	code:	use
std::mem::forget;

fn	main()	{
for	_	in	0..10000	{
let	mut	a	=	vec![2;	10000000];
a[2]	=	2;
forget(a);
}
}

The	forget	function	is	seldom	used.	Similarly,	memory	leaks	are	permitted	but
sufficiently	discouraged	that	they	are	somewhat	uncommon.	Rust	memory
management	tends	to	be	such	that	by	the	time	you	cause	a	memory	leak	you	are
probably	waist-deep	in	other	poor	design	decisions.

However,	unsused	memory	is	not	uncommon.	If	you	don't	keep	track	of	what
variables	you	are	actively	using,	then	old	variables	will	likely	remain	in	scope.
This	is	not	the	typical	definition	of	a	memory	leak;	however,	unused	data	is	a
similar	waste	of	resources.

Optimizing	the	code	that	needs	it	–
profiling
Don't	optimize	code	that	doesn't	need	to	be	optimized.	It's	a	waste	of	your	time
and	probably	poor	software	engineering.	Save	yourself	the	trouble	and	identify
performance	problems	accurately	before	attempting	to	optimize	the	program.

For	a	code	rarely	executed,
performance	is	not	affected
It	is	very	common	that	you	will	initialize	some	resource	and	use	it	multiple
times.	Optimizing	initialization	of	resources	may	be	misdirected.	You	should
consider	focusing	on	improving	the	work	efficiency.	This	is	done	as	follows:	use
std::{thread,time};

fn	initialization()	{
let	t	=	time::Duration::from_millis(15000);
thread::sleep(t);
}

fn	work()	{
let	t	=	time::Duration::from_millis(15000);
loop	{
thread::sleep(t);
println!("Work.");
}
}

fn	main()	{
initialization();
println!("Done	initializing,	start	work.");
work();
}

	

	

Multiples	of	small	numbers	are	also
small	numbers
The	reverse	may	also	be	true.	Sometimes	the	low	frequency	of	work	is
overwhelmed	by	frequent	and	expensive	initialization.	Knowing	which	problem
you	have	will	let	you	know	where	to	start	looking	to	improve:	use	std::
{thread,time};

fn	initialization()	->	Vec<i32>	{
let	t	=	time::Duration::from_millis(15000);
thread::sleep(t);
println!("Initialize	data.");
vec![1,	2,	3];
}

fn	work(x:	i32)	->	i32	{
let	t	=	time::Duration::from_millis(150);
thread::sleep(t);
println!("Work.");
x	*	x
}

fn	main()	{
for	_	in	0..10	{
let	data	=	initialization();
data.iter().map(|x|	work(*x)).for_each(drop);
}
}

	

	

Measuring	first,	to	optimize	it
There	are	a	lot	of	options	for	profiling.	Here	are	some	that	we	recommend.

The	flame	crate	is	one	option	to	manually	profile	an	application.	Here	we	create
the	nested	procedures	a,	b,	and	c.	Each	function	creates	a	profiling	context
corresponding	do	that	method.	After	running	the	profiler	we	will	see
proportionally	how	much	time	was	spent	for	each	call	to	each	function.

Starting	with	function	a,	this	procedure	creates	a	new	profiling	context,	sleeps
for	one	second,	then	calls	b	three	times:	extern	crate	flame;
use	std::fs::File;
use	std::{thread,time};

fn	a()	{
flame::start("fn	a");
let	t	=	time::Duration::from_millis(1000);
thread::sleep(t);
b();
b();
b();
flame::end("fn	a");
}

Function	b	is	nearly	identical	to	a,	and	further	calls	into	function	c:	fn	b()	{
flame::start("fn	b");
let	t	=	time::Duration::from_millis(1000);
thread::sleep(t);
c();
c();
c();
flame::end("fn	b");
}

Function	c	profiles	itself	and	sleeps,	but	does	not	call	any	further	nested

function:	fn	c()	{
flame::start("fn	c");
let	t	=	time::Duration::from_millis(1000);
thread::sleep(t);
flame::end("fn	c");
}

The	main	entrypoint	sets	up	the	flame	graph	library	and	calls	a	three	times,	then
saves	the	flamegraph	to	a	file:	fn	main()	{
flame::start("fn	main");
let	t	=	time::Duration::from_millis(1000);
thread::sleep(t);
a();
a();
a();
flame::end("fn	main");
flame::dump_html(&mut	File::create("flame-graph.html").unwrap()).unwrap();
}

After	running	this	program,	the	flame-graph.html	file	will	contain	a	visualization	of
what	program	sections	took	what	percentage	of	resources.	The	flame	crate	is	easy
to	install,	requires	some	manual	code	manipulation,	but	produces	a	cool-looking
graph.

cargo	profiler	is	a	tool	that	extends	cargo	to	do	performance	profiling	without	any
code	changes.	Here	is	a	random	program	that	we	will	profile:	fn	a(n:	u64)	->	u64
{
if	n>0	{
b(n);
b(n);
}
n	*	n
}

fn	b(n:	u64)	->	u64	{
c(n);
c(n);
n	+	2	/	3

}

fn	c(n:	u64)	->	u64	{
a(n-1);
a(n-1);
vec![1,	2,	3].into_iter().map(|x|	x+2).sum()
}

fn	main()	{
a(6);
}

To	profile	the	application	we	run	the	following	command:	$	cargo	profiler
callgrind	--bin	./target/debug/performance_profiling4	-n	10

This	will	run	the	program	and	collect	information	regarding	which	functions
were	most	used.	This	profiler	also	has	another	option	to	profile	memory	usage.
The	output	will	look	like	the	following:	Profiling	performance_profiling4	with
callgrind...

Total	Instructions...344,529,557

27,262,872	(7.9%)	???:core::iter::iterator::Iterator
--
22,319,604	(6.5%)	???:<alloc::vec
--
16,627,356	(4.8%)	???:<core::iter
--
13,182,048	(3.8%)	???:<alloc::vec
--
10,785,312	(3.1%)	???:core::iter::iterator::Iterator::fold
--
10,485,720	(3.0%)	???:core::mem
--
8,088,984	(2.3%)	???:alloc::slice::hack
--
7,639,596	(2.2%)	???:core::ptr

--
7,190,208	(2.1%)	???:core::ptr
--
7,190,016	(2.1%)	???:performance_profiling4

This	clearly	shows	us	that	the	most	time	is	spent	in	iterator	and	vector	creation.
Running	this	command	may	make	the	program	execute	much	more	slowly	than
normal,	but	it	also	saves	writing	any	code	before	profiling.

Putting	the	fridge	next	to	the
computer
If	you	take	a	snack	break	while	coding,	then	it	would	be	convenient	to	have	a
fridge	and	microwave	next	to	the	computer.	If	you	travel	to	the	kitchen	for	a
snack,	then	it	will	take	a	little	longer	to	satisfy	your	appetite.	If	your	kitchen	is
empty	and	you	need	to	make	a	grocery	run,	then	the	break	is	even	further
extended.	If	your	grocery	store	is	empty	and	you	need	to	drive	to	a	farm	to
harvest	vegetables,	then	your	work	environment	is	clearly	not	designed	for
snacking	purposes.

This	strange	analogy	illustrates	the	necessary	trade-off	between	time	and	space.
This	relation	is	not	quite	a	physical	law	for	our	purposes,	but	almost.	The	rule	is
that	traveling,	or	communicating,	over	longer	distances	is	directly	proportional
to	time	spent.	More	distance	(d)	in	one	direction	also	means	an	increase	in
available	space	of	quadratic	(d2)	or	cubic	(d3)	scale.	In	other	words	building	the
fridge	farther	away	provides	more	space	for	a	larger	fridge.

Bringing	this	story	back	to	a	technical	context,	here	are	some	latency	numbers
that	every	programmer	should	know	(~2012:	https://gist.github.com/jboner/2841832):

Request Time

L1	cache	reference 0.5	ns

Branch	mispredict 5	ns

L2	cache	reference 7	ns

Mutex	lock/unlock 25	ns

Main	memory	reference 100	ns

Compress	1	Kb	with	Zippy 3000	ns

Send	1	Kb	over	1	Gbps	network 10000	ns

Read	4	Kb	randomly	from	SSD 150000	ns

https://gist.github.com/jboner/2841832

Read	1	Mb	sequentially	from	memory 250000	ns

Round	trip	within	same	datacenter 500000	ns

Send	packet	CA	|	Netherlands	|	CA 150000000	ns

	

Here,	we	can	see	in	specific	numbers	that	if	you	want	a	donut	and	some	coffee
then	you	could	eat	300,000,000	donuts	from	the	fridge	next	to	your	computer
before	taking	your	first	bite	from	a	Danish.

	

	

	

Capping	the	Big	O
Big	O	notation	is	a	computer	science	term	used	to	group	functions	with	respect
to	how	fast	they	grow	as	the	input	value	gets	larger.	This	term	is	most	often	used
with	respect	to	algorithm	runtime	or	space	requirement.

When	using	this	term	in	software	engineering,	we	are	usually	concerned	with
one	of	these	four	cases:

Constant
Logarithmic	growth
Polynomial	growth
Exponential	growth

When	we	are	concerned	with	application	performance,	it	is	good	to	consider	the
Big	O	efficiency	of	the	logic	you	are	using.	Depending	on	which	of	the
preceding	four	cases	you	are	dealing	with,	the	appropriate	response	to
optimization	strategies	may	change.

	

	

	

Constanting	no	growth
Constant	time	operations	are	the	indivisible	units	of	runtime	performance.	In	the
previous	section,	we	provided	a	table	of	common	operations	and	how	long	each
one	takes.	These	are,	for	our	purposes	as	programmers,	basically	physical
constants.	You	can't	optimize	the	speed	of	light	to	make	it	go	faster.

Not	all	constant	time	operations	are	irreducible,	however.	If	you	have	a
procedure	that	does	a	fixed	number	of	operations	on	fixed-size	data,	then	it	will
be	constant	time.	That	does	not	mean	that	the	procedure	is	automatically
efficient.	When	trying	to	optimize	constant	time	procedures,	ask	yourself	these
two	questions:

Can	any	of	the	work	be	avoided?
Is	the	fridge	too	far	from	the	computer?

Here	is	a	program	consisting	of	emphasizing	constant	time	operations:	fn
allocate()	->	[u64;	1000]	{
[22;	1000]
}

fn	flop(x:	f64,	y:	f64)	->	f64	{
x	*	y
}

fn	lookup(x:	&[u64;	1000])	->	u64	{
x[234]	*	x[345]
}

fn	main()	{
let	mut	data	=	allocate();
for	_	in	0..1000	{
//constant	size	memory	allocation
data	=	allocate();
}

for	_	in	0..1000000	{
//reference	data
lookup(&data);
}

for	_	in	0..1000000	{
//floating	point	operation
flop(2.0,	3.0);
}
}

Then,	let's	profile	this	program:	Profiling	performance_constant	with
callgrind...

Total	Instructions...896,049,080

217,133,740	(24.2%)	???:_platform_memmove$VARIANT$Haswell

108,054,000	(12.1%)	???:core::ptr

102,051,069	(11.4%)	???:core::iter::range

76,038,000	(8.5%)	???:<i32

56,028,000	(6.3%)	???:core::ptr

46,023,000	(5.1%)	???:core::iter::range::ptr_try_from_impls

45,027,072	(5.0%)	???:performance_constant

44,022,000	(4.9%)	???:core::ptr

40,020,000	(4.5%)	???:core::mem

30,015,045	(3.3%)	???:core::cmp::impls

We	see	that	the	heavy	memory	allocation	is	fairly	expensive.	As	for	the	memory
access	and	floating	point	calculation,	it	is	seemingly	overwhelmed	by	the
expense	of	the	loop	that	executes	them	multiple	times.	Unless	there	is	a	clear
culprit	for	poor	performance	in	a	constant	time	procedure,	then	optimizing	this
code	may	not	be	straightforward.

Logarithmic	growth
Logarithmic	algorithms	are	the	pride	of	computer	science.	If	your	O(n)	for	n=5
code	could	have	been	written	with	an	O(log	n)	algorithm,	then	surely	at	least	one
person	will	point	this	out.

A	binary	search	is	O(log	n).	A	sort	is	typically	O(n	log	n).	Everything	with	a	log
in	it	is	better.	This	fondness	is	not	misplaced.	Logarithmic	growth	has	an
amazing	property—growth	slows	down	as	the	input	value	increases.

Here	is	a	program	emphasizing	logarithmic	growth.	We	initialize	a	vector	with
random	numbers	having	size	of	1000	or	10000.	Then	we	use	the	builtin	library
to	sort	and	perform	100	binary	search	operations.	First	let's	capture	the	time	for
sort	and	search	for	the	1000	case:	extern	crate	rand;
extern	crate	flame;
use	std::fs::File;

fn	main()	{
let	mut	data	=	vec![0;	1000];
for	di	in	0..data.len()	{
data[di]	=	rand::random::<u64>();
}

flame::start("sort	n=1000");
data.sort();
flame::end("sort	n=1000");

flame::start("binary	search	n=1000	100	times");
for	_	in	0..100	{
let	c	=	rand::random::<u64>();
data.binary_search(&c).ok();
}
flame::end("binary	search	n=1000	100	times");

Now	we	profile	the	10000	case:

			let	mut	data	=	vec![0;	10000];

			for	di	in	0..data.len()	{

						data[di]	=	rand::random::<u64>();

			}

			flame::start("sort	n=10000");

			data.sort();

			flame::end("sort	n=10000");

			flame::start("binary	search	n=10000	100	times");

			for	_	in	0..100	{

						let	c	=	rand::random::<u64>();

						data.binary_search(&c).ok();

			}

			flame::end("binary	search	n=10000	100	times");

			flame::dump_html(&mut	File::create("flame-graph.html").unwrap()).unwrap();

}

After	running	this	and	examining	the	flamegraphs,	we	can	see	that	sorting	for	a
vector	that	is	10	times	larger	takes	barely	10	times	as	much	time—O(n	log	n).
Search	performance	is	hardly	affected	at	all—O(log	n).	So	for	practical	uses,
logarithmic	growth	is	almost	negligible.

When	trying	to	optimize	logarithmic	code,	follow	the	same	approach	as	for
constant	time	optimization.	Logarithmic	complexity	is	usually	not	a	good	target
for	optimization,	particularly	considering	that	logarithmic	complexity	is	a	strong
indicator	of	good	algorithm	design.

Polynomial	growth
Most	algorithms	are	polynomial.

If	you	have	one	for	loop,	then	your	complexity	is	O(n).	This	is	shown	in	the
following	code:	fn	main()	{
for	_	in	0..1000	{
//O(n)
//n	=	1000
}
}

If	you	have	two	for	loops,	then	your	complexity	is	O(n2):	fn	main()	{
for	_	in	0..1000	{
for	_	in	0..1000	{
//O(n^2)
//n	=	1000
}
}
}

Higher	polynomials	are	somewhat	less	common.	Sometimes	code	accidentally
becomes	a	higher	polynomial,	which	you	should	be	careful	about;	otherwise,
let's	just	consider	both	the	previous	cases.

Linear	complexity	is	very	common.	Any	time	you	process	the	entirety	of	data	in
a	collection,	the	complexity	will	be	linear.	The	running	time	of	a	linear	algorithm
will	be	approximately	the	number	of	items	(n)	processed,	multiplied	by	the	time
to	process	individual	items	(c).	If	you	want	to	make	a	linear	algorithm	go	faster,
you	need	to:

Reduce	the	number	of	items	processed	(n)
Reduce	the	constant	time	associated	with	processing	an	item	(c)

If	the	time	to	process	an	item	is	not	constant	or	approximately	constant,	then
your	overall	time	complexity	is	now	recursively	dependent	on	that	processing

time.	This	is	shown	with	the	following	code:	fn	a(n:	u64)	{
//Is	this	O(n)?
for	_	in	0..n	{
b(n)
}
}

fn	b(n:	u64)	{
//Is	this	O(n)?
for	_	in	0..n	{
c(n)
}
}

fn	c(n:	u64)	{
//This	is	O(n)
for	_	in	0..n	{
let	_	=	1	+	1;
}
}

fn	main()	{
//What	time	complexity	is	this?
a(1000)
}

Higher	polynomial	complexity	is	also	common	but	may	indicate	that	your
algorithm	is	poorly	designed.	In	the	preceding	description,	we	mentioned	that
the	linear	processing	time	can	become	dependent	on	the	time	to	process
individual	items.	If	your	program	is	designed	carelessly,	then	it	is	very	easy	to
string	together	three	or	four	linear	algorithms	and	unintentionally	create	an	O(n4)
monster.

Higher	polynomials	are	proportionally	slower.	In	the	case	of	algorithms	that
naively	require	high	polynomial	calculations,	it	is	often	the	case	that	the
algorithm	can	be	pruned	to	remove	calculations	that	are	redundant	or	entirely
unnecessary.	Consider	the	following	code:	extern	crate	rusty_machine;

use	rusty_machine::linalg::{Matrix,Vector};
use	rusty_machine::learning::gp::{GaussianProcess,ConstMean};
use	rusty_machine::learning::toolkit::kernel;
use	rusty_machine::learning::SupModel;

fn	main()	{
let	inputs	=	Matrix::new(3,3,vec![1.1,1.2,1.3,2.1,2.2,2.3,3.1,3.2,3.3]);
let	targets	=	Vector::new(vec![0.1,0.8,0.3]);
let	test_inputs	=	Matrix::new(2,3,	vec![1.2,1.3,1.4,2.2,2.3,2.4]);
let	ker	=	kernel::SquaredExp::new(2.,	1.);
let	zero_mean	=	ConstMean::default();
let	mut	gp	=	GaussianProcess::new(ker,	zero_mean,	0.5);

gp.train(&inputs,	&targets).unwrap();
let	_	=	gp.predict(&test_inputs).unwrap();
}

When	you	need	to	use	higher	polynomial	algorithms,	use	a	library!	This	stuff
gets	complicated	fast	and	improving	these	algorithms	is	the	main	job	of
academic	Computer	Scientists.	If	you	are	performance-tuning	a	common
algorithm	and	not	expecting	to	publish	your	results,	then	you	may	likely	be
duplicating	work.

Exponential	growth
Exponential	performance	in	engineering	is	almost	always	a	bug	or	a	dead	end.
This	is	the	wall	that	separates	algorithms	that	we	use	from	algorithms	that	we
would	like	to	use	but	can't	due	to	performance	reasons.

Exponential	growth	in	programs	is	often	accompanied	by	the	term	bomb:	fn
bomb(n:	u64)	->	u64	{
if	n	>	0	{
bomb(n-1);
bomb(n-1);
}
n
}

fn	main()	{
bomb(1000);
}

This	program	is	only	O(2n)	and	therefore	barely	even	exponential!

Referencing	data	is	faster
There	is	a	rule	of	thumb	that	referencing	data	is	faster	than	copying	data.
Similarly,	copying	data	is	faster	than	cloning.	This	is	not	always	true,	but	it	is	a
good	rule	to	consider	when	trying	to	improve	program	performance.

Here	is	a	function	that	alternatively	uses	data	by	reference,	copied,	intrinsic
cloned,	or	custom	cloned:	extern	crate	flame;
use	std::fs::File;

fn	byref(n:	u64,	data:	&[u64;	1024])	{
if	n>0	{
byref(n-1,	data);
byref(n-1,	data);
}
}

fn	bycopy(n:	u64,	data:	[u64;	1024])	{
if	n>0	{
bycopy(n-1,	data);
bycopy(n-1,	data);
}
}

struct	DataClonable([u64;	1024]);
impl	Clone	for	DataClonable	{
fn	clone(&self)	->	Self	{
let	mut	newdata	=	[0;	1024];
for	i	in	0..1024	{
newdata[i]	=	self.0[i];
}
DataClonable(newdata)
}
}

fn	byclone<T:	Clone>(n:	u64,	data:	T)	{
if	n>0	{
byclone(n-1,	data.clone());
byclone(n-1,	data.clone());
}
}

Here	we	declare	array	of	1024	elements.	Then	using	the	flamegraph	profiling
library	we	apply	the	above	functions	to	measure	the	differences	between
reference,	copy	and	clone	performance:	fn	main()	{
let	data	=	[0;	1024];
flame::start("by	reference");
byref(15,	&data);
flame::end("by	reference");

let	data	=	[0;	1024];
flame::start("by	copy");
bycopy(15,	data);
flame::end("by	copy");

let	data	=	[0;	1024];
flame::start("by	clone");
byclone(15,	data);
flame::end("by	clone");

let	data	=	DataClonable([0;	1024]);
flame::start("by	clone	(with	extras)");
//2^4	instead	of	2^15!!!!
byclone(4,	data);
flame::end("by	clone	(with	extras)");

flame::dump_html(&mut	File::create("flame-graph.html").unwrap()).unwrap();
}

Looking	at	the	runtime	of	this	application,	we	see	that	the	referenced	data	uses
only	a	small	sliver	of	the	resources	compared	to	copying	or	cloning	this	data.
The	default	clone	and	copy	traits	unsurprisingly	give	a	similar	performance.	The

custom	clone	is	really	slow.	It	does	semantically	the	same	thing	as	all	the	others,
but	it	is	not	as	optimized	at	a	low	level.

Preventing	bugs	with	defensive
coding
You	don’t	need	to	fix	bugs	that	never	happen.	Preventative	medicine	is	good
software	engineering	that	will	save	you	time	in	the	long	run.

Using	Option	and	Result	instead	of
panic!
In	many	other	languages,	exception	handling	is	performed	through	try…catch
blocks.	Rust	does	not	automatically	provide	this	functionality,	instead	it
encourages	the	programmer	to	explicitly	localize	all	error	handling.

In	many	Rust	contexts,	if	you	don’t	want	to	deal	with	error	handling,	you	always
have	the	option	to	use	panic!.	This	will	immediately	end	the	program	and	provide
a	short	error	message.	Don't	do	this.	Panicking	is	usually	just	a	way	of	avoiding
the	responsibility	of	handling	errors.

Instead,	use	either	the	Option	or	Result	types	to	communicate	error	or	exceptional
conditions.	Option	indicates	that	no	value	is	available.	The	None	value	of	Option
should	indicate	that	there	is	no	value	but	that	everything	is	okay	and	expected.

The	Result	type	is	used	to	communicate	whether	or	not	there	was	an	error	in
processing.	Result	types	can	be	used	in	combination	with	the	?	syntax	to
propagate	errors	while	avoiding	introducing	too	much	extra	syntax.	The	?
operation	will	return	errors	from	the	function,	if	any,	and	therefore	the	function
must	have	a	Result	return	type.

Here	we	create	two	functions	that	return	Option	or	Result	to	handle	exceptional
circumstances.	Note	the	use	of	the	try	?	syntax	when	handling	Result	return
values.	This	syntax	will	pass	through	Ok	values	or	immediately	return	any	Err
from	that	function.	For	this	reason,	any	function	using	?	must	also	return	a
compatible	Result	type:	//This	function	returns	an	Option	if	the	value	is	not
expected
fn	expect_1or2or_other(n:	u64)	->	Option<u64>	{
match	n	{
1|2	=>	Some(n),
_	=>	None
}
}

//This	function	returns	an	Err	if	the	value	is	not	expected
fn	expect_1or2or_error(n:	u64)	->	Result<u64,()>	{
match	n	{
1|2	=>	Ok(n),
_	=>	Err(())
}
}

//This	function	uses	functions	that	return	Option	and	Return	types
fn	mixed_1or2()	->	Result<(),()>	{
expect_1or2or_other(1);
expect_1or2or_other(2);
expect_1or2or_other(3);

expect_1or2or_error(1)?;
expect_1or2or_error(2)?;
expect_1or2or_error(3).unwrap_or(222);
Ok(())
}

fn	main()	{
mixed_1or2().expect("mixed	1	or	2	is	OK.");
}

Result	types	are	very	common	when	interacting	with	external	resources	such	as
files:	use	std::fs::File;
use	std::io::prelude::*;
use	std::io;

fn	lots_of_io()	->	io::Result<()>	{
{
let	mut	file	=	File::create("data.txt")?;
file.write_all(b"data\ndata\ndata")?;
}

{

let	mut	file	=	File::open("data.txt")?;
let	mut	data	=	String::new();
file.read_to_string(&mut	data)?;
println!("{}",	data);
}
Ok(())
}

fn	main()	{
lots_of_io().expect("lots	of	io	is	OK.");
}

Using	typesafe	interfaces	instead	of
stringly	typed	interfaces
Enumerations	in	Rust	are	less	error-prone	than	using	numbers	or	strings.
Whenever	possible,	write	the	following	code:	const	MyEnum_A:	u32	=	1;
const	MyEnum_B:	u32	=	2;
const	MyEnum_C:	u32	=	3;

Similarly,	you	can	write	a	stringly	enumeration:	"a"
"b"
"c"

It	is	better	to	use	the	following	enum	type:	enum	MyEnum	{
A,
B,
C,
}

This	way,	functions	accepting	the	enumeration	will	be	typesafe:	fn	foo(n:	u64)
{}	//not	all	u64	are	valid	inputs
fn	bar(n:	&str)	{}	//not	all	&str	are	valid	inputs
fn	baz(n:	MyEnum)	{}	//all	MyEnum	are	valid

Enums	also	fit	naturally	with	pattern	matching	for	the	same	reason.	Pattern
matching	against	an	enumeration	does	not	require	a	final	error	case	like	the
integer	or	string	typed	case	would:	match	a	{
1	=>	println!(“1	is	ok”),
2	=>	println!(“2	is	ok”),
3	=>	println!(“3	is	ok”),
n	=>	println!(“{}	was	unexpected”,	n)
}

Using	the	heartbeat	pattern	for	long
running	processes
When	you	want	to	create	a	long	running	process,	it	is	nice	to	be	able	to	recover
from	program	errors	that	crash	or	terminate	the	process.	Perhaps	the	process	runs
out	of	stack	space	or	encounters	a	panic!	from	some	code	path.	For	any	number
of	reasons,	a	process	might	get	terminated	and	will	need	to	be	restarted.

To	accommodate	this	desire,	there	are	many	tools	that	will	watch	a	program	for
you	and	restart	it	if	it	dies	or	stops	responding	to	health	checks.	Here,	we
recommend	a	completely	self-contained	version	of	this	pattern	that	is	based	on
Rust	concurrency.

The	goal	is	to	create	a	parent	process	that	acts	as	a	monitor	and	oversees	one	or
more	workers.	The	process	tree	should	look	something	like	this:	parent
—-	child	1
—-	child	2
—-	child	3

When	a	child	dies	or	stops	responding	to	health	checks,	the	parent	should	kill	or
otherwise	clean	up	the	process	resources,	then	start	a	new	process	to	replace	it.
Here	is	an	example	of	this	behavior,	starting	with	a	subprocess	that	sometimes
dies:	use	std::{thread,time,process};

fn	main()	{
let	life_expectancy	=	process::id()	%	8;
let	t	=	time::Duration::from_millis(1000);
for	_	in	0..life_expectancy	{
thread::sleep(t);
}
println!("process	{}	dies	unexpectedly.",	process::id());
}

This	worker	process	is	highly	unreliable	and	lives	no	longer	than	eight	seconds.

However,	if	we	wrap	it	with	a	heartbeat	monitor,	then	we	can	make	it	more
reliable:	use	std::process::Command;
use	std::env::current_exe;
use	std::{thread,time};

fn	main()	{
//There	is	an	executable	called	debugging_buggy_worker
//it	crashes	a	lot	but	we	still	want	to	run	it
let	path	=	current_exe()
.expect("could	not	find	current	executable");
let	path	=	path.with_file_name("debugging_buggy_worker");
let	mut	children	=	Vec::new();

//we	start	3	workers
for	_	in	0..3	{
children.push(
Command::new(path.as_os_str())
.spawn()
.expect("failed	to	spawn	child")
);
}

//those	workers	will	randomly	die	because	they	are	buggy
//so	after	they	die,	we	restart	a	new	process	to	replace	them
let	t	=	time::Duration::from_millis(1000);
loop	{
thread::sleep(t);
for	ci	in	0..children.len()	{
let	is_dead	=	children[ci].try_wait().expect("failed	to	try_wait");
if	let	Some(_exit_code)	=	is_dead	{
children[ci]	=	Command::new(path.as_os_str())
.spawn()
.expect("failed	to	spawn	child");
println!("starting	a	new	process	from	parent.");
}
}
}

}

Now,	the	running	processes	will	get	restarted	if	they	die	unexpectedly.
Optionally,	the	parent	can	check	the	health	status	of	each	child	process	and
restart	unresponsive	workers.

Validating	input	and	output
Preconditions	and	postconditions	are	a	great	way	to	lock	down	program	behavior
and	find	bugs	or	invalid	states	before	they	get	out	of	hand.

If	you	use	macros	to	do	this,	then	the	preconditions	and	postconditions	can
optionally	be	run	only	in	debug	mode,	and	removed	from	production	code.	The
built-in	debug_assert!	macro	does	this.	However,	using	assertions	for	return	values
is	not	particularly	elegant	and,	if	you	forget	to	check	a	branch	with	a	return
statement,	then	your	postcondition	won't	be	checked.

debug_assert!	is	not	a	good	choice	for	the	validation	of	anything	dependent	on
external	data	or	otherwise	nondeterministic	behavior.	When	you	want	to	check
preconditions	or	postconditions	in	production	code,	you	should	instead	use	Result
or	Option	values	to	handle	exceptional	behavior.

Here	are	some	examples	of	preconditions	and	postconditions	in	Rust:	use	std::io;

//This	function	checks	the	precondition	that	[n	<	100]
fn	debug_precondition(n:	u64)	->	u64	{
debug_assert!(n	<	100);
n	*	n
}

//This	function	checks	the	postcondition	that	[return	>	10]
fn	debug_postcondition(n:	u64)	->	u64	{
let	r	=	n	*	n;
debug_assert!(r	>	10);
r
}

//this	function	dynamically	checks	the	precondition	[n	<	100]
fn	runtime_precondition(n:	u64)	->	Result<u64,()>	{
if	!(n<100)	{	return	Err(())	};
Ok(n	*	n)

}

//this	function	dynamically	checks	the	postcondition	[return	>	10]
fn	runtime_postcondition(n:	u64)	->	Result<u64,()>	{
let	r	=	n	*	n;
if	!(r>10)	{	return	Err(())	};
Ok(r)
}

//This	main	function	uses	all	of	the	functions
//The	dynamically	validated	functions	are	subjected	to	user	input
fn	main()	{
//inward	facing	code	should	assert	expectations
debug_precondition(5);
debug_postcondition(5);

//outward	facing	code	should	handle	errors
let	mut	s	=	String::new();
println!("Please	input	a	positive	integer	greater	or	equal	to	4:");
io::stdin().read_line(&mut	s).expect("error	reading	input");
let	i	=	s.trim().parse::<u64>().expect("error	parsing	input	as	integer");
runtime_precondition(i).expect("runtime	precondition	violated");
runtime_postcondition(i).expect("runtime	postcondition	violated");
}

Notice	that	the	user	input	is	out	of	our	control.	The	best	option	for	validating
user	input	is	to	return	an	Error	condition	if	the	input	is	invalid.

Finding	and	fixing	bugs
Debugging	tools	are	quite	platform	dependent.	Here	we	will	explain	lldb,	which
is	available,	and	macOS	and	other	Unix-like	systems.

To	start	debugging,	you	will	need	to	compile	the	program	with	debugging
symbols	turned	on.	The	normal	cargo	debug	build	is	usually	sufficient:	cargo	build

After	the	program	has	been	compiled,	start	the	debugger:	$	sudo	rust-lldb
target/debug/deps/performance_polynomial3-8048e39c94dd7157

Here	we	reference	the	debugs/deps/program_name-GITHASH	copy	of	the	program.	This	is
necessary	for	now	just	because	of	how	lldb	works.

After	running	lldb,	you	will	see	some	information	scroll	past	on	startup.	Then,
you	should	be	dropped	into	a	LLDB	Command	Prompt:	(lldb)	command	source	-
s	0	'/tmp/rust-lldb-commands.YnRBkV'
Executing	commands	in	'/tmp/rust-lldb-commands.YnRBkV'.
(lldb)	command	script	import	"/Users/andrewjohnson/.rustup/toolchains/nightly-
x86_64-apple-darwin/lib/rustlib/etc/lldb_rust_formatters.py"
(lldb)	type	summary	add	--no-value	--python-function
lldb_rust_formatters.print_val	-x	".*"	--category	Rust
(lldb)	type	category	enable	Rust
(lldb)	target	create	"target/debug/deps/performance_polynomial3-
8048e39c94dd7157"
Current	executable	set	to	'target/debug/deps/performance_polynomial3-
8048e39c94dd7157'	(x86_64).
(lldb)

Now,	set	a	breakpoint.	We	will	set	a	breakpoint	to	stop	at	function	a:	(lldb)	b	a
Breakpoint	1:	where	=	performance_polynomial3-
8048e39c94dd7157`performance_polynomial3::a::h0b267f360bbf8caa	+	12	at
performance_polynomial3.rs:3,	address	=	0x000000010000191c

Now	that	our	breakpoint	is	set,	run	the	r	command:	(lldb)	r
Process	99468	launched:

'/Users/andrewjohnson/subarctic.org/subarctic.org/Hands-On-Functional-
Programming-in-
RUST/Chapter09/target/debug/deps/performance_polynomial3-
8048e39c94dd7157'	(x86_64)
Process	99468	stopped
*	thread	#1,	queue	=	'com.apple.main-thread',	stop	reason	=	breakpoint	1.1
frame	#0:	0x000000010000191c	performance_polynomial3-
8048e39c94dd7157`performance_polynomial3::a::h0b267f360bbf8caa(n=1000)
at	performance_polynomial3.rs:3
1	fn	a(n:	u64)	{
2	//Is	this	O(n);
->	3	for	_	in	0..n	{
4	b(n);
5	}
6	}
7	
Target	0:	(performance_polynomial3-8048e39c94dd7157)	stopped.

After	stopping	at	the	breakpoint,	LLDB	will	print	some	context	for	where	the
code	is	stopped	at.	Now	we	can	inspect	the	program.	Let's	print	what	variables
are	defined	in	this	function:	(lldb)	frame	variable
(unsigned	long)	n	=	1000

We	can	similarly	print	any	variable	in	scope:	(lldb)	p	n
(unsigned	long)	$0	=	1000

When	we	want	to	continue	the	program,	type	c	to	continue:	(lldb)	c
Process	99468	resuming
Process	99468	exited	with	status	=	0	(0x00000000)

The	program	exits	here	because	we	did	not	set	any	more	breakpoints.	This
method	of	debugging	is	nice	because	it	allows	you	to	inspect	a	running	program
without	constantly	adding	println!	statements	and	recompiling.	If	nothing	else
works,	that	is	still	an	option	though.

Metaprogramming
Metaprogramming	in	Rust	has	two	forms—macros	and	procedural	macros.	Both
of	these	utilities	accept	an	abstract	syntax	tree	as	new	input	and	output	symbols
to	be	compiled.	Procedural	macros	are	very	similar	to	normal	macros	but	with
fewer	restrictions	on	how	they	work	and	how	they	are	defined.

Macros	defined	with	the	macro_rules!	syntax	are	defined	recursively	by	matching
the	input	syntax	to	produce	output.	It	is	crucial	to	understand	that	macro
matching	happens	after	parsing.	This	means	the	following:

Macros	must	follow	certain	rules	when	creating	new	syntax	forms
The	AST	is	decorated	with	information	regarding	each	node's	grammar
category

Macros	can	match	individual	tokens,	or	a	macro	can	match	(and	capture)	an
entire	grammar	category.	The	Rust	grammar	categories	are	as	follows:

tt:	This	is	a	token	tree	(which	is	a	token	output	from	the	lexer	before
parsing)
ident:	This	is	an	identifier
expr:	This	is	an	expression
ty:	This	is	a	type
stmt:	This	is	a	statement
block:	These	are	the	braces	containing	a	block	of	statements
item:	This	is	a	top-level	definition	such	as	a	function	or	a	struct
pat:	This	is	the	match	part	of	a	pattern	match	expression,	also	called	the	left
hand	side
path:	This	is	a	path	such	as	std::fs::File
meta:	This	is	a	meta	item	that	goes	inside	either	#[...]	or	#![...]	syntax	forms

Using	these	patterns	we	can	create	macros	to	match	various	groups	of	syntax
expressions:	//This	macro	rule	matches	one	token	tree	"tt"
macro_rules!	match_tt	{
($e:	tt)	=>	{	println!("match_tt:	{}",	stringify!($e))	}
}

//This	macro	rule	matches	one	identifier	"ident"
macro_rules!	match_ident	{
($e:	ident)	=>	{	println!("match_ident:	{}",	stringify!($e))	}
}

//This	macro	rule	matches	one	expression	"expr"
macro_rules!	match_expr	{
($e:	expr)	=>	{	println!("match_expr:	{}",	stringify!($e))	}
}

//This	macro	rule	matches	one	type	"ty"	
macro_rules!	match_ty	{
($e:	ty)	=>	{	println!("match_ty:	{}",	stringify!($e))	}
}

//This	macro	rule	matches	one	statement	"stmt"
macro_rules!	match_stmt	{
($e:	stmt)	=>	{	println!("match_stmt:	{}",	stringify!($e))	}
}

//This	macro	rule	matches	one	block	"block"
macro_rules!	match_block	{
($e:	block)	=>	{	println!("match_block:	{}",	stringify!($e))	}
}

//This	macro	rule	matches	one	item	"item"
//items	are	things	like	function	definitions,	struct	definitions,	...
macro_rules!	match_item	{
($e:	item)	=>	{	println!("match_item:	{}",	stringify!($e))	}
}

//This	macro	rule	matches	one	pattern	"pat"
macro_rules!	match_pat	{
($e:	pat)	=>	{	println!("match_pat:	{}",	stringify!($e))	}
}

//This	macro	rule	matches	one	path	"path"
//A	path	is	a	canonical	named	path	like	std::fs::File
macro_rules!	match_path	{
($e:	path)	=>	{	println!("match_path:	{}",	stringify!($e))	}
}

//This	macro	rule	matches	one	meta	"meta"
//A	meta	is	anything	inside	of	the	#[...]	or	#![...]	syntax
macro_rules!	match_meta	{
($e:	meta)	=>	{	println!("match_meta:	{}",	stringify!($e))	}
}

Then,	let's	apply	the	macros	to	some	different	input:	fn	main()	{
match_tt!(a);
match_tt!(let);
match_tt!(+);

match_ident!(a);
match_ident!(bcd);
match_ident!(_def);

match_expr!(1.2);
match_expr!(bcd);
match_expr!(1.2	+	bcd	/	"b"	-	[1,	3,	4]	..	vec![1,	2,	3]);

match_ty!(A);
match_ty!(B	+	'static);
match_ty!(A<&(B	+	'b),&mut	(C	+	'c)>	+	'static);

match_stmt!(let	x	=	y);
match_stmt!(());
match_stmt!(fn	f(){});

match_block!({});
match_block!({1;	2});
match_block!({1;	2	+	3});

match_item!(struct	A(u64););
match_item!(enum	B	{	C,	D	});
match_item!(fn	C(n:	NotAType)	->	F<F<F<F<F>>>>	{	a	+	b	});

match_pat!(_);
match_pat!(1);
match_pat!(A	{b,	c:D(d@3)});

match_path!(A);
match_path!(::A);
match_path!(std::A);
match_path!(a::<A,_>);

match_meta!(A);
match_meta!(Property(B,C));
}

As	we	can	see	from	the	example,	token	trees	are,	for	the	most	part,	not	restricted
to	normal	Rust	grammar,	only	to	the	Rust	lexer.	The	lexer	is	aware	of	opening
and	closing	()	[]	{}	bracketed	forms.	This	is	why	tokens	are	structured	in	a	token
tree	rather	than	a	token	list.	This	also	means	that	all	tokens	inside	macro	calls
will	be	stored	as	token	trees	and	not	processed	any	further	until	the	macro	is
invoked;	as	long	as	we	create	a	syntax	compatible	with	Rust	token	trees,	then
other	syntax	innovations	should	usually	be	permitted.	This	rule	applies	also	to
the	other	grammar	categories:	grammar	categories	are	just	a	short	hand	to	match
certain	pattern	of	tokens	that	happen	to	correspond	to	Rust	syntax	forms.

Just	matching	single	tokens	or	grammar	categories	probably	won't	be	very	useful
for	a	macro.	To	make	use	of	macros	in	a	practical	context,	we	will	need	to	make
use	of	macro	grammar	sequences	and	grammar	alternatives.	A	grammar
sequence	is	a	request	to	match	more	than	one	token	or	grammar	category	in	the
same	rule.	A	grammar	alternative	is	a	separate	rule	within	the	same	macro	that
matches	a	different	syntax.	Grammar	sequences	and	alternatives	can	also	be
combined	in	the	same	macro.	Additionally,	there	is	a	special	syntax	form	to
match	many	tokens	or	grammar	categories.

Here	are	corresponding	examples	to	illustrate	these	patterns:	//this	is	a	grammar
sequence

macro_rules!	abc	{
(a	b	c)	=>	{	println!("'a	b	c'	is	the	only	correct	syntax.")	};
}

//this	is	a	grammar	alternative
macro_rules!	a_or_b	{
(a)	=>	{	println!("'a'	is	one	correct	syntax.")	};
(b)	=>	{	println!("'b'	is	also	correct	syntax.")	};
}

//this	is	a	grammar	of	alternative	sequences
macro_rules!	abc_or_aaa	{
(a	b	c)	=>	{	println!("'a	b	c'	is	one	correct	syntax.")	};
(a	a	a)	=>	{	println!("'a	a	a'	is	also	correct	syntax.")	};
}

//this	is	a	grammar	sequence	matching	many	of	one	token
macro_rules!	many_a	{
($($a:ident)*)	=>	{{	$(print!("one	{}	",	stringify!($a));)*	println!("");	}};
($($a:ident),*)	=>	{{	$(print!("one	{}	comma	",	stringify!($a));)*	println!("");
}};
}

fn	main()	{
abc!(a	b	c);

a_or_b!(a);
a_or_b!(b);

abc_or_aaa!(a	b	c);
abc_or_aaa!(a	a	a);

many_a!(a	a	a);
many_a!(a,	a,	a);
}

If	you've	paid	attention	to	the	generated	code	for	all	of	these	macros,	you	might

have	noticed	that	all	production	rules	have	created	expressions.	Macro	input	can
be	tokens,	but	output	must	be	a	contextually	well-formed	Rust	syntax.	For	this
reason,	you	cannot	write	macro_rules!	as	shown	here:	macro_rules!	f	{
()	=>	{	f!(1)	f!(2)	f!(3)	};
(1)	=>	{	1	};
(2)	=>	{	+	};
(3)	=>	{	2	};
}

fn	main()	{
f!()
}

The	specific	error	from	the	compiler	is	as	follows:	error:	macro	expansion
ignores	token	`f`	and	any	following
-->	t.rs:2:19
|
2	|	()	=>	{	f!(1);	f!(2);	f!(3)	};
|	^
|
note:	caused	by	the	macro	expansion	here;	the	usage	of	`f!`	is	likely	invalid	in
expression	context
-->	t.rs:9:4
|
9	|	f!()
|	^^^^

error:	aborting	due	to	previous	error

The	key	phrase	here	is	f!,	which	is	likely	invalid	in	an	expression	context.	Each
pattern	of	macro_rules!	output	must	be	a	well-formed	expression.	The	preceding
example	will	create	well-formed	Rust	syntax	in	the	end,	but	its	intermediate
results	are	fragmented	expressions.	This	awkwardness	is	one	of	the	several
reasons	to	use	procedural	macros,	which	are	much	like	macro_rules!	but
programmed	directly	in	Rust	rather	than	through	the	special	macro_rules!	syntax.

Procedural	macros	are	programmed	in	Rust,	but	are	also	used	to	compile	Rust
programs.	How	does	that	work?	Procedural	macros	must	be	isolated	into	their

own	modules	and	compiled	separately;	they	are	basically	a	compiler	plugin.

To	start	our	procedural	macro,	let's	create	a	new	subproject:

1.	 Make	a	procmacro	directory	inside	the	project	root
2.	 Inside	the	procmacro	directory,	create	a	Cargo.toml	file	with	the	following

contents:

[package]

name	=	"procmacro"

version	=	"1.0.0"

[dependencies]

syn	=	"0.12"

quote	=	"0.4"

[lib]

proc-macro	=	true

3.	 Inside	the	procmacro	directory,	create	a	src/lib.rs	file	with	the	following
contents:

#![feature(proc_macro)]

#![crate_type	=	"proc-macro"]

extern	crate	proc_macro;

extern	crate	syn;

#[macro_use]	extern	crate	quote;

use	proc_macro::TokenStream;

#[proc_macro]

pub	fn	f(input:	TokenStream)	->	TokenStream	{

			assert!(input.is_empty());

			(quote!	{

						1	+	2

			}).into()

}

This	f!	macro	now	implements	the	preceding	semantics	without	any	of	the
complaints.	Using	the	macro	looks	like	the	following:	#!
[feature(proc_macro_non_items)]
#![feature(use_extern_macros)]
extern	crate	procmacro;

fn	main()	{
let	_	=	procmacro::f!();
}

The	interface	of	a	procedural	macro	is	really	simple.	There	is	a	TokenStream	as

input	and	a	TokenStream	as	output.	The	proc_macro	and	syn	crates	also	provide	utilities
to	parse	tokens	or	to	easily	create	token	streams	using	the	quote!	macro.	To	use
procedural	macros,	there	is	some	additional	setup	and	boilerplate,	but	after
getting	past	these	hurdles	the	interface	is	fairly	straightforward	now.

Additionally,	there	are	many	more	detailed	grammar	categories	available	to
procedural	macros	through	the	syn	crate.	There	are	163	categories	(https://dtolnay.
github.io/syn/syn/#macros)	right	now!	These	include	the	same	vague	syntax	trees
from	recursive	macros,	but	also	very	specific	syntax	forms.	These	categories
correspond	to	the	full	Rust	grammar,	therefore	permitting	very	expressive	macro
syntax	without	having	to	create	your	own	parser.

Let's	make	a	procedural	macro	that	uses	some	of	these	syntax	categories.	First
we	make	a	new	procedural	macro	folder,	just	like	preceding	procmacro;	this	one
we	will	name	procmacro2.	Now	we	define	the	AST	that	will	hold	all	of	the	program
information	if	the	user	input	is	valid:	#![feature(proc_macro)]
#![crate_type	=	"proc-macro"]
extern	crate	proc_macro;
#[macro_use]	extern	crate	syn;
#[macro_use]	extern	crate	quote;
use	proc_macro::TokenStream;
use	syn::{Ident,	Type,	Expr,	WhereClause,	TypeSlice,	Path};
use	syn::synom::Synom;

struct	MiscSyntax	{
id:	Ident,
ty:	Type,
expr:	Expr,
where_clause:	WhereClause,
type_slice:	TypeSlice,
path:	Path
}

The	MiscSyntax	struct	will	contain	all	information	gathered	from	our	macro.	That
macro	and	its	syntax	is	what	we	should	define	now:	impl	Synom	for	MiscSyntax
{
named!(parse	->	Self,	do_parse!(
keyword!(where)	>>

https://dtolnay.github.io/syn/syn/#macros

keyword!(while)	>>
id:	syn!(Ident)	>>
punct!(:)	>>
ty:	syn!(Type)	>>
punct!(>>)	>>
expr:	syn!(Expr)	>>
punct!(;)	>>
where_clause:	syn!(WhereClause)	>>
punct!(;)	>>
type_slice:	syn!(TypeSlice)	>>
punct!(;)	>>
path:	syn!(Path)	>>
(MiscSyntax	{	id,	ty,	expr,	where_clause,	type_slice,	path	})
));
}

The	do_parse!	macro	helps	simplify	the	use	of	the	parser	combinators	from	the	syn
crate.	The	id:	expr	>>	syntax	corresponds	to	the	monadic	bind	operation,	and	expr
>>	syntax	is	also	a	form	of	a	monadic	bind.

Now	we	utilize	these	definitions	to	parse	input,	generate	output,	and	expose	the
macro:	#[proc_macro]
pub	fn	misc_syntax(input:	TokenStream)	->	TokenStream	{
let	m:	MiscSyntax	=	syn::parse(input).expect("expected	Miscellaneous	Syntax");
let	MiscSyntax	{	id,	ty,	expr,	where_clause,	type_slice,	path	}	=	m;

(quote!	{
let	#id:	#ty	=	#expr;
println!("variable	=	{}",	#id);
}).into()
}

When	using	this	macro,	it	really	is	a	bunch	of	random	syntax.	This	emphasizes
how	macros	are	not	limited	to	valid	Rust	syntax,	which	looks	like	the	following:
#![feature(proc_macro_non_items)]
#![feature(use_extern_macros)]
extern	crate	procmacro2;

fn	main()	{
procmacro2::misc_syntax!(
where	while	abcd	:	u64	>>	1	+	2	*	3;
where	T:	'x	+	A<B='y+C+D>;
[M];A::f
);
}

Procedural	macros	are	very	powerful	and	helpful	if	Rust	syntax	becomes
annoying	for	your	purposes.	For	specific	contexts	it	is	possible	to	create	very
semantically	dense	code	using	macros	that	would	otherwise	require	lots	of
boilerplate	and	copy-paste	coding.

Summary
In	this	chapter,	we	introduced	many	applied	and	practical	considerations	for	Rust
programming.	Performance	and	debugging	are	certainly	not	problems	that	are
exclusive	to	Functional	Programming.	Here	we	tried	to	introduce	tips	that	are
generally	applicable	but	also	highly	compatible	with	functional	programming.

Metaprogramming	in	Rust	may	be	considered	a	functional	feature	by	itself.
Logic	programming	and	thereby	derived	functionality	are	closely	associated
with	functional	programming	principles.	The	recursive,	context-free	nature	of
macros	also	lends	itself	to	a	functional	perspective.

This	is	also	the	last	chapter	in	the	book.	We	hope	you	have	enjoyed	the	book	and
we	welcome	any	feedback.	If	you	are	looking	for	further	reading,	you	might
want	to	research	some	of	the	topics	presented	in	the	final	three	chapters	of	the
book.	There	is	an	enormous	amount	of	material	available	on	these	subjects	and
any	path	taken	will	surely	further	improve	your	understanding	of	Rust	and
functional	programming.

Questions
1.	 How	is	release	mode	different	from	debug	mode?
2.	 How	long	will	an	empty	loop	take	to	run?
3.	 What	is	linear	time	in	Big	O	notation?
4.	 Name	a	function	that	grows	faster	than	exponential	growth.
5.	 What	is	faster,	a	disk	read	or	a	network	read?
6.	 How	would	you	return	a	Result	with	multiple	error	conditions?
7.	 What	is	a	token	tree?
8.	 What	is	an	abstract	syntax	tree?
9.	 Why	do	procedural	macros	need	to	be	compiled	separately?

	

	

Assessments

Functional	Programming	–	a
Comparison
1.	 What	is	a	function?

A	function	defines	a	transformation,	accepts	data,	and	returns	the	result
of	the	transformation.

2.	 What	is	a	functor?

A	functor	defines	data,	accepts	a	transformation,	and	returns	the	result	of
the	transformation.

3.	 What	is	a	tuple?

A	tuple	is	a	container	of	a	fixed	number	of	miscellaneous	values.

4.	 What	control	flow	expression	was	designed	for	use	with	Enums?

Pattern	matching	expressions	are	a	match	for	Enums,	and	vice-versa.

5.	 What	is	the	name	for	a	function	with	a	function	as	a	parameter?

Functions	of	functions	are	called	higher-order	functions.

6.	 How	many	times	will	fib	be	called	in	memoized	fib(20)?

fib	will	be	called	39	times.	fib	will	be	invoked	21	times.

7.	 What	datatypes	can	be	sent	over	a	channel?

Sent	data	must	implement	Send,	which	is	usually	derived	by	the	compiler
automatically.

8.	 Why	do	functions	need	to	be	boxed	when	returned	from	a	function?

Functions	are	traits	so	they	do	not	have	a	known	size	at	compile	time.

Therefore,	they	must	either	be	parameterized	or	turned	into	trait	objects
with	something	like	Box.

9.	 What	does	the	move	keyword	do?

The	move	keyword	transfers	ownership	of	variables	to	new	contexts.

10.	 How	could	two	variables	share	ownership	of	a	single	variable?

Indirect	references,	such	as	Rc,	permit	sharing	references	to	the	same	data.

Functional	Control	Flow
1.	 What	is	the	ternary	operator?

The	if	condition	is	the	ternary	operator	but	has	the	unique	Rust	syntax	of
if	a	{	b	}	else	{	c	}.

2.	 What	is	another	name	for	unit	tests?

Unit	tests	are	also	called	whitebox	testing.

3.	 What	is	another	name	for	integration	tests?

Integration	tests	are	also	called	blackbox	testing.

4.	 What	is	declarative	programming?

Declarative	programming	avoids	implementation	details	when	describing
a	program.

5.	 What	is	imperative	programming?

Imperative	programming	focuses	on	implementation	details	when
describing	a	program.

6.	 What	is	defined	in	the	iterator	trait?

The	iterator	trait	is	defined	by	an	associated	Item	type,	and	the	required
next	method.

7.	 In	which	direction	will	fold	traverse	the	iterator	sequence?

fold	will	traverse	an	iterator	from	left	to	right,	or	more	specifically,	from
first	to	last.

8.	 What	is	a	dependency	graph?

A	dependency	graph	is	a	directed	graph	that	describes	the	dependency

relationships	between	nodes.	In	our	case,	we	use	this	to	describe
relationships	of	the	form	x	must	happen	before	y.

9.	 What	are	the	two	constructors	of	Option?

Option	can	be	created	as	Some(x)	or	None.

Functional	Data	Structures
1.	 What	is	a	good	library	to	serialize	and	deserialize	data?

We	recommend	serde.

2.	 What	do	the	hashtag	derive	lines	in	front	of	the	struct	declarations	in
physics.rs	do?

These	are	macros	that	will	automatically	derive	trait	implementations	for
these	data	structures.

3.	 Which	comes	first	in	parameterized	declarations—lifetimes	or	traits?

Lifetime	parameters	must	come	before	trait	parameters	in	parameter
declarations.

4.	 In	a	trait	implementation,	what	is	the	difference	between	parameters	on	the
impl,	trait,	or	type?

The	impl<A,...>	syntax	defines	what	symbols	will	be	parameterized.	The
Trait<A,...>	syntax	defines	what	trait	is	being	implemented.	The	Type<A,...>
syntax	defines	what	type	the	trait	is	being	implemented	for.

5.	 What	is	the	difference	between	a	trait	and	a	data	class?

The	term	data	class	is	not	a	Rust	term.	Think	of	a	data	class	as	if	it	were
a	trait	but	without	fewer	limitations	than	what	Rust	might	impose.

6.	 How	should	you	declare	that	a	package	has	multiple	binaries?

In	Cargo.toml,	list	all	of	the	binaries	and	their	entry	points:	[[bin]]
name	=	"binary1"
path	=	"binary1.rs"

[[bin]]
name	=	"binary2"

path	=	"binary2.rs"

7.	 How	do	you	declare	a	structure	field	as	private?

Do	not	declare	it	as	public.	Fields	are	private	by	default.

Generics	and	Polymorphism
1.	 What	is	an	algebraic	data	type?

An	algebraic	data	type	is	a	kind	of	composite	type	formed	by	combining
other	types.

2.	 What	is	polymorphism?

Polymorphism	is	the	quality	of	having	many	forms.

3.	 What	is	parametric	polymorphism?

Parametric	polymorphism	is	the	quality	of	having	many	forms	according
to	a	parameter.

4.	 What	is	a	ground	type?

A	ground	type	is	a	type	that	has	no	parameters,	modifiers,	or
substitutions.	For	example,	i32	or	String.

5.	 What	is	Universal	Function	Call	syntax?

Universal	Function	Call	syntax	is	used	to	disambiguate	functions	or
methods.	It	looks	like	Foo::f(&b)	instead	of	b.f().

6.	 What	are	the	possible	type	signatures	of	a	trait	object?

A	trait	object	is	any	signature	for	a	trait	that	will	give	it	a	known	size	at
compile	time.	Common	examples	of	this	are	&Trait	or	Box<Trait>.

7.	 What	are	two	ways	to	obscure	type	information?

Trait	objects	and	traits	in	general	hide	information.	Associated	types	also
reduce	the	amount	of	information	necessary	to	interact	with	code.

8.	 How	is	a	subtrait	declared?

trait	SuperTrait:	SubTrait1	+	SubTrait2	{}

Code	Organization	and	Application
Architecture
1.	 What	are	four	ways	of	grouping	code	into	modules?

Our	workshop	model	has	four	ways	of	grouping	code	together:	by	type,
by	purpose,	by	layer,	and	by	convenience.

2.	 What	does	FFI	stand	for?

FFI	stands	for	Foreign	Function	Interface.

3.	 Why	are	unsafe	blocks	necessary?

The	unsafe	syntax	in	Rust	indicates	that	you	want	to	use	superpowers	and
that	you	accept	the	responsibility.

4.	 Is	it	ever	safe	to	use	unsafe	blocks?

Nothing	is	safe.	There	is	an	ongoing	effort	by	core	Rust	developers	to
rewrite	standard	library	code	to	use	fewer	unsafe	features.	Still,
depending	on	how	far	down	you	look,	there	is	no	absolute	safety	in	any
context.	For	example,	the	core	compiler	is	just	assumed	to	always	be
logically	consistent	with	regards	to	safety	checks	(hopefully	it	is).

5.	 What	is	the	difference	between	a	libc::c_int	and	an	i32?

c_int	is	a	direct	alias—type	c_int	=	i32;.

6.	 Can	linked	libraries	define	functions	with	the	same	name?

C++	uses	something	called	name	mangling	to	export	symbols	with	the
same	name.	However,	Rust	does	not	currently	recognize	this	format	with
extern.

7.	 What	type	of	files	can	be	linked	into	a	Rust	project?

Linked	libraries	can	be	of	the	form	name.a,	name.lib,	name.so,	name.dylib,
name.dll,	or	name.rlib,	each	with	their	own	format.

Mutability,	Ownership,	and	Pure
Functions
1.	 What	does	Rc	stand	for?

Rc	stands	for	Reference	Counted.

2.	 What	does	Arc	stand	for?

Arc	stands	for	Atomically	Reference	Counted.

3.	 What	is	a	weak	reference?

A	weak	reference	is	a	reference	that	is	not	reference	counted	or	otherwise
managed.

4.	 Which	superpowers	are	enabled	in	unsafe	blocks?

In	an	unsafe	block,	you	can	dereference	a	raw	pointer,	call	an	unsafe
function	or	method,	access	or	modify	a	mutable	static	variable,	or
implement	and	unsafe	trait.

5.	 When	will	an	object	be	dropped?

An	object	will	be	dropped	when	its	owner	is	dropped	or	goes	out	of
scope.

6.	 What	is	the	difference	between	lifetimes	and	ownership?

Lifetimes	are	a	compile-time	check.	Ownership	is	a	compile-time	as	well
as	runtime	concept.	Both	concepts	describe	the	tracking	of	variables,
values,	and	whether	and	who	uses	them.

7.	 How	can	you	be	sure	that	a	function	is	safe?

In	Rust,	there	is	no	way	to	declare	the	absence	of	unsafe	behavior	in

functions.

8.	 What	is	memory	corruption	and	how	would	it	affect	a	program?

There	are	two	types	of	memory	corruption—physical	memory	corruption
and	software	memory	corruption.	If	your	physical	memory	is	corrupted,
then	you	need	to	replace	your	hardware.	Software	memory	corruption
refers	to	anything	the	program	has	done	to	destroy	the	semantic	structure
of	its	own	program.	When	memory	is	corrupted,	everything	goes	wrong;
this	is	one	of	the	hardest	classes	of	bugs	to	diagnose	and	treat.

Design	Patterns
1.	 What	is	a	functor?

A	functor	defines	data,	accepts	a	function,	and	returns	a	transformation	of
the	data.

2.	 What	is	a	contravariant	functor?

A	contravariant	functor	is	a	functor	where	the	accepted	function	may
produce	0,	1,	or	many	return	values.	By	comparison,	functor's	accepted
functions	must	return	exactly	1	value.

3.	 What	is	a	monad?

A	monad,	parameterized	by	a	single	type	A,	is	a	value	that	has	a	trait
exposing	two	operations,	usually	named	return	and	bind.	return	is	a
function	that	constructs	a	new	monad<A>	from	a	provided	A	value.	bind
should	incorporate	new	information	to	produce	a	related	but	separate
monad.

4.	 What	are	the	monad	laws?

These	equivalencies	must	hold	for	strict	monads.	The	three	horizontal
bars	means	equivalence:

_return(v).bind(f)	≡	f(v)

m.bind(_return)	≡	m

m.bind(f).bind(g)	≡	(|x|	f(x).bind(g))

5.	 What	is	a	combinator?

A	functional	combinator	combines	functions.	A	combinator	more
generator	combines	things.

6.	 Why	is	the	impl	keyword	necessary	for	closure	return	values?

Closures	are	traits,	not	types.	Therefore	they	do	not	have	a	size	known	at
compile	time.	impl	for	a	return	type	tells	the	compiler	to	parameterize	the
return	type.

7.	 What	is	lazy	evaluation?

Lazy	evaluation	is	when	computation	is	delayed	until	some	point	in	the
future.	This	is	compared	to	eager	evaluation,	where	computation	occurs
immediately.

Implementing	Concurrency
1.	 What	is	a	subprocess?

A	subprocess	is	a	child	process	started	by	a	parent	process.	The	child
process	must	remain	under	the	parent	process	to	continue	to	be	called	a
subprocess.

2.	 Why	is	fork	called	fork?

fork	means	a	split	(process),	like	a	fork	in	the	road,	or	a	forked	tongue.

3.	 Is	fork	still	useful?

Yes!	If	you	have	access	to	it	on	your	system.	For	example,	the	heartbeat
pattern	is	much	more	elegant	with	fork.

4.	 When	were	threads	standardized?

Threads	have	never	been	universally	standardized.	The	Posix	standard
introduced	threads	in	1995.	Notably,	Windows	provides	no	standard	or
guarantees	regarding	thread	behavior.	There	are	similarities,	but	no
standard.

5.	 Why	is	move	sometimes	needed	for	thread	closures?

Move	tells	the	compiler	that	it	is	OK	to	transfer	ownership	of	captured
variables	to	the	closure.

6.	 What	is	the	difference	between	Send	and	Sync	traits?

Sync	is	a	stronger	assertion	of	thread-safety—a	type	is	Send	if	it	is	safe	to
send	it	to	another	thread.	A	type	is	Sync	if	it	is	safe	to	share	between
threads.

7.	 What	are	we	allowed	to	lock,	then	mutate	Mutex	without	an	unsafe	block?

The	compiler	has	determined	that	Mutex	is	already	safe	to	use	and	meets
certain	requirements	for	safety.	That	is	not	to	say	that	bad	things	can't
happen—a	Mutex	will	poison	itself	if	one	of	its	MutexGuards	(the	thing	it
returns	when	a	lock	is	obtained)	is	dropped	during	a	panic.	Any	future
attempts	to	lock	the	Mutex	will	return	an	Err	or	panic!.

Performance,	Debugging,	and
Metaprogramming
1.	 How	is	release	mode	different	from	debug	mode?

That	depends	on	your	Cargo	configuration.	By	default,	there	are	several
compiler	flags	that	have	different	default	values	in	release	versus	debug
mode.	One	such	flag	is	the	opt-level	that	gets	sent	to	the	llvm	code
generation—the	default	debug	opt-level	is	2,	and	the	default	release	opt-
level	is	3.	These	defaults	can	be	changed	in	Cargo.toml.

2.	 How	long	will	an	empty	loop	take	to	run?

Test	it	out.	Otherwise,	it	is	hard	to	say	for	sure	on	every	platform.	loop
will	always	be	an	infinite	loop.	while	true	should	maybe	also	be	an
infinite	loop,	but	will	generate	a	warning.	for	_	in	0..99999999	{}	will	be
removed	at	opt-level	3	but	not	opt-level	2.

3.	 What	is	linear	time	in	Big	O	notation?

Linear	time	is	O(n)	time.

4.	 Name	a	function	that	grows	faster	than	exponential	growth.

Factorial	O(n!)	grows	faster	than	exponential	growth.

5.	 What	is	faster,	a	disk	read	or	a	network	read?

Measure	it.	There	are	many	physical	factors	to	consider	here.

6.	 How	would	you	return	a	Result	with	multiple	error	conditions?

Rust	recommends	using	enum	types	to	describe	multiple	error	conditions.
Being	lazy,	you	could	also	use	the	std::any::Any	type.

7.	 What	is	a	token	tree?

A	token	tree	is	a	tree	data	structure	containing	tokens.	As	a	result	of	Rust
lexing,	(...),	[...],	and	{...}	token	groups	will	become	their	own	branches.

8.	 What	is	an	Abstract	Syntax	Tree?

An	abstract	syntax	tree	is	like	a	token	tree	but	it	has	a	strict	structure	such
that	only	well-formed	(Rust)	code	can	be	represented	by	it.

9.	 Why	do	procedural	macros	need	to	be	compiled	separately?

Procedural	macros	are	written	with	normal	Rust	code.	To	be	used	in
compilation,	procedural	macros	need	to	have	already	been	compiled.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:	

Network	Programming	with	Rust
Abhishek	Chanda

ISBN:	978-1-78862-489-3

Appreciate	why	networking	is	important	in	implementing	distributed
systems
Write	a	non-asynchronous	echo	server	over	TCP	that	talks	to	a	client	over	a
network
Parse	JSON	and	binary	data	using	parser	combinators	such	as	nom
Write	an	HTTP	client	that	talks	to	the	server	using	reqwest
Modify	an	existing	Rust	HTTTP	server	and	add	SSL	to	it
Master	asynchronous	programming	support	in	Rust
Use	external	packages	in	a	Rust	project

Rust	High	Performance
Iban	Eguia	Moraza

https://www.packtpub.com/application-development/network-programming-rust
https://www.packtpub.com/application-development/rust-high-performance

ISBN:	978-1-78839-948-7

Master	tips	and	tricks	to	make	your	code	faster
Learn	how	to	identify	bottlenecks	in	your	Rust	applications
Discover	how	to	profile	your	Rust	software
Understand	the	type	system	to	create	compile-time	optimizations
Master	the	borrow	checker
Learn	metaprogramming	in	Rust	to	avoid	boilerplate	code
Discover	multithreading	and	work	stealing	in	Rust
Understand	asynchronous	programming	in	Rust

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	

	

	Title Page
	Copyright and Credits
	Hands-On Functional Programming in Rust

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Functional Programming – a Comparison
	Technical requirements
	Reducing code weight and complexity
	Making generics more generic
	Functions as values
	Iterators
	Compact legible expressions

	Strict abstraction means safe abstraction
	Scoped data binding
	Algebraic datatypes
	Mixing object-oriented programming and functional programming

	Improving project architecture
	File hierarchy, modules, and namespace design
	Functional design patterns
	Metaprogramming

	Summary
	Questions
	Further reading

	Functional Control Flow
	Technical requirements
	Designing the program
	Gathering project requirements
	Architecting a code map from requirements
	Creating a Rust project
	Writing stubs for each program requirement

	Implementing program logic
	Filling in the blanks
	Parsing input and storing as building description and floor requests
	Updating location, velocity, and acceleration
	If the next floor request in the queue is satisfied, then remove it from the queue
	Adjusting motor control to process the next floor request
	Printing real-time statistics
	Printing summary

	Breaking down long segments into components
	Searching for abstractions

	Writing tests
	Unit testing
	Integration testing

	Summary
	Questions

	Functional Data Structures
	Technical requirements
	Adjusting to changing the scope of the project
	Gathering new project requirements
	Architecting a change map from requirements
	Translating expectations into requirements
	Translating requirements into a change map

	Mapping requirements directly to code
	Writing the physics simulator
	Writing the motor controller
	Writing the executable to run a simulation
	Writing the executable to analyze a simulation

	Running simulations and analyzing data
	Summary
	Questions

	Generics and Polymorphism
	Technical requirements
	Staying productive during downtime
	Learning about generics
	Investigating generics
	Investigating parametric polymorphism
	Investigating generalized algebraic datatypes
	Investigating parametric lifetimes
	Defining lifetimes on ground types
	Defining lifetimes on generic types
	Defining lifetimes on traits
	Defining lifetime subtyping

	Investigating parametric types

	Applying parameterization concepts
	Parameterizing data
	Parameterizing functions and trait objects
	Parametric traits and implementations

	Summary
	Questions

	Code Organization and Application Architecture
	Technical requirements
	Shipping a product without sacrificing quality
	Reorganizing the project
	Planning content of files by type
	Organizing the motor_controllers.rs module
	Organizing the buildings.rs module

	Planning content of files by purpose
	Organizing the motion_controllers.rs module
	Organizing the trip_planning.rs module
	Organizing the elevator_drivers.rs module

	Planning content of files by layer
	Organizing the physics.rs module
	Organizing the data_recorder.rs module

	Planning the content of files by convenience
	Organizing the simulate_trip.rs executable
	Organizing the analyze_trip.rs executable
	Organizing the operate_elevator.rs executable

	Mapping code changes and additions
	Developing code by type
	Writing the motor_controllers.rs module
	Writing the buildings.rs module

	Developing code by purpose
	Writing the motion_controllers.rs module
	Writing the trip_planning.rs module
	Writing the elevator_drivers.rs module

	Developing code by layer
	Writing the physics.rs module
	Writing the data_recorders.rs module

	Developing code by convenience
	Writing the simulate_trip.rs executable
	Writing the analyze_trip.rs executable
	Writing the operate_elevator.rs executable

	Reflecting on the project structure

	Summary
	Questions

	Mutability, Ownership, and Pure Functions
	Technical requirements
	Recognizing anti-patterns of ownership
	Inspecting the microcontroller drivers
	Inspecting the type and trait definitions
	Defining the OverrideCode enum
	Defining the ErrorCode enum
	Defining the AuthorizedSession struct and deconstructor
	Authorizing sessions
	Checking errors and resetting state
	Privileged commands
	Normal commands
	Querying library and session state

	Inspecting the foreign library tests
	Issuing override codes
	Accessing status information and sessions
	Deactivating active sessions
	Issuing normal commands
	Issuing privileged commands
	Denying unauthorized commands

	Inspecting the Rust tests
	Rust authorization with sessions
	Rust sharing session reference
	Privileged commands
	Unprivileged commands
	Denying access to privileged commands

	Learning the rules of ownership
	When the owner goes out of scope, the value will be dropped

	Using immutable data
	Fixing the hard-to-reproduce bug
	Preventing hard-to-reproduce bugs

	Using pure functions
	Summary
	Questions

	Design Patterns
	Technical requirements
	Using the functor pattern
	Using the monad pattern
	Using the combinator pattern
	Parser combinators

	Using the lazy evaluation pattern
	Summary
	Questions

	Implementing Concurrency
	Technical requirements
	Using subprocess concurrency
	Understanding nix fork concurrency
	Using thread concurrency
	Understanding Send and Sync traits
	Using functional design for concurrency
	Summary
	Questions

	Performance, Debugging, and Metaprogramming
	Technical requirements
	Writing faster code
	Compiling with release mode
	Doing less work
	Optimizing the code that needs it – profiling
	For a code rarely executed, performance is not affected
	Multiples of small numbers are also small numbers
	Measuring first, to optimize it

	Putting the fridge next to the computer
	Capping the Big O
	Constanting no growth
	Logarithmic growth
	Polynomial growth
	Exponential growth

	Referencing data is faster

	Preventing bugs with defensive coding
	Using Option and Result instead of panic!
	Using typesafe interfaces instead of stringly typed interfaces
	Using the heartbeat pattern for long running processes
	Validating input and output

	Finding and fixing bugs
	Metaprogramming
	Summary
	Questions

	Assessments
	Functional Programming – a Comparison
	Functional Control Flow
	Functional Data Structures
	Generics and Polymorphism
	Code Organization and Application Architecture
	Mutability, Ownership, and Pure Functions
	Design Patterns
	Implementing Concurrency
	Performance, Debugging, and Metaprogramming

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

